Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative

NanoVelcro Chip
NanoVelcro Chip

Abstract:
A team of investigators from Cedars-Sinai and UCLA is using a new blood-analysis technique and tiny experimental device to help physicians predict which cancers are likely to spread by identifying and characterizing tumor cells circulating through the blood.

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative

Los Angeles, CA | Posted on February 13th, 2017

The investigators are conducting “liquid biopsies” by running blood through a postage-stamp-sized chip with nanowires 1,000 times thinner than a human hair and coated with antibodies, or proteins, that recognize circulating tumor cells. The device, the NanoVelcro Chip, works by “grabbing” circulating tumor cells, which break away from tumors and travel through the bloodstream, looking for places in the body to spread.

Use of the chip in liquid biopsies could allow doctors to regularly and easily monitor cancer-related changes in patients, such as how well they’re responding to treatment. The research earned the lead investigators a place on the U.S. Cancer Moonshot program, an initiative led by former Vice President Joe Biden to make available more therapies to more patients and to prevent cancer.

“It’s far better to draw a tube of blood once a month to monitor cancer than to make patients undergo repeated surgical procedures,” said Edwin Posadas, MD, medical director of the Urologic Oncology Program at Cedars-Sinai’s Samuel Oschin Comprehensive Cancer Institute and one of the lead investigators. “The power of this technology lies in its capacity to provide information that is equal to or even superior to traditional tumor sampling by invasive procedures.”

Although some forms of prostate cancer are so slow-growing that they pose little risk to patients, other forms of the disease are lethal. Identifying which patients have which type of disease has become a crucial area of study because prostate cancer is one of the leading causes of cancer death among men in the U.S. Nearly 27,000 U.S. men are expected to die from the disease in 2017, according to the American Cancer Society.

The research team has determined that in certain cancer cells, the nucleus is smaller than in other, more typical, cancer cells. Patients with the most advanced cases of aggressive prostate cancer have cells with these very small nuclei.

The investigators’ teamwork also revealed that very small nuclei are associated with metastasis, or cancer spread, to the liver and lung in patients with advanced cases of prostate cancer. Those nuclei developed before the metastases were detected. Identifying very small nuclei early in the disease progression may help pinpoint which patients have high risk of developing cancer that can spread and be fatal.

Hsian-Rong Tseng, PhD, professor, Department of Molecular and Medical Pharmacology in the David Geffen School of Medicine at UCLA and the other lead investigator, said that his work with Posadas is focused on improving the quality of life for cancer patients.

“We’re on a mission to dramatically change patients’ everyday lives and their long-term outcomes,” Tseng said. “We now have powerful new tools to accomplish that.”

Posadas and Tseng join an elite cadre of academicians, technology leaders and pharmaceutical experts as partners in the Blood Profiling Atlas in Cancer (BloodPAC) Project, a Moonshot program. Participants will collect and share data gathered from circulating tumor cells. Posadas and Tseng expect to contribute microscopic images from 1,000 circulating tumor cells that have not yet been analyzed, as well as additional data and cells they have cataloged.

For the past five years, Posadas and Tseng have collected blood samples from cancer patients to profile and analyze the circulating tumor cells and other components. That process has helped them understand how prostate and other cancers evolve. The two investigators and their teams hope their findings will contribute to developing effective, targeted treatments for many types of cancer.

“Minimally invasive methods to both diagnose and follow cancer, through simple blood tests, offer a unique and novel approach that can lead to earlier diagnosis and treatment, leading to more cures,” said Robert A. Figlin, MD, director of the Division of Hematology Oncology and deputy director of the Samuel Oschin Comprehensive Cancer Institute at Cedars- Sinai.

####

About Cedars-Sinai
Cedars-Sinai is a leader in providing high-quality healthcare encompassing primary care, specialized medicine and research. Since 1902, Cedars-Sinai has evolved to meet the needs of one of the most diverse regions in the nation, setting standards in quality and innovative patient care, research, teaching and community service. Today, Cedars-Sinai is known for its national leadership in transforming healthcare for the benefit of patients. Cedars-Sinai impacts the future of healthcare by developing new approaches to treatment and educating tomorrow’s health professionals. Additionally, Cedars-Sinai demonstrates a commitment to the community through programs that improve the health of its most vulnerable residents.

About the David Geffen School of Medicine at UCLA

Since opening in 1951, the David Geffen School of Medicine at UCLA has grown into an internationally recognized leader in research, medical education, patient care and public service. It has almost 2,000 full-time faculty members, including recipients of the Nobel Prize, the Pulitzer Prize and the National Medal of Science. More than 1,400 residents and fellows pursue advanced training at UCLA and its affiliated hospitals, which include Ronald Reagan UCLA Medical Center.

For more information, please click here

Contacts:
Cedars-Sinai Media Contact: Diane Wedner
Telephone: 310-248-6608


cedars-sinai.edu
Social Media: @CedarsSinai

UCLA_Geffen

UCLA Media Contact : Tami Dennis
Telephone: 310-267-7022

Twitter: @Tami_Dennis

Copyright © Cedars-Sinai

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Cancer

Using injectable self-assembled nanomaterials for sustained delivery of drugs: New injectable delivery system can slowly release drug carriers for months February 12th, 2018

Rice University lab modifies nanoscale virus to deliver peptide drugs to cells, tissues January 8th, 2018

SNUH team develops new nanomaterial for thermal cancer therapy January 5th, 2018

Novel nanomedicine inhibits progression of pancreatic cancer in mice: Survival rates in pancreatic cancer linked to inverse correlation between specific oncogene and tumor suppressant, Tel Aviv University researchers say January 3rd, 2018

Possible Futures

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Nanomedicine

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Discoveries

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Announcements

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Tools

New method enables high-resolution measurements of magnetism February 7th, 2018

Nanometrics Selected for Fab-Wide Process Control Metrology by Domestic China 3D-NAND Manufacturer: Latest Fab Win Includes Comprehensive Suite for Substrate, Thin Film and Critical Dimension Metrology February 7th, 2018

A new radiation detector made from graphene: A new bolometer exploits the thermoelectric properties of graphene February 6th, 2018

Measuring the temperature of two-dimensional materials at the atomic level February 3rd, 2018

Nanobiotechnology

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Research partnerships

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Vanadium dioxyde: A revolutionary material for tomorrow's electronics: Phase-chance switch can now be performed at higher temperatures February 5th, 2018

Nanowire LED Innovator Aledia Announces €30 ($36M) Million Series-C Financing: Intel Capital Joins Existing Investors to Commercialize Certain Nanowire-LED Technologies for Mobile Displays January 29th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project