Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells

Steps for building DNA nanotube connections between molecular landmarks.
CREDIT
Nature Nanotechnology, 2016, Abdul M. Mohammed et alia
Steps for building DNA nanotube connections between molecular landmarks. CREDIT Nature Nanotechnology, 2016, Abdul M. Mohammed et alia

Abstract:
In a microscopic feat that resembled a high-wire circus act, Johns Hopkins researchers have coaxed DNA nanotubes to assemble themselves into bridge-like structures arched between two molecular landmarks on the surface of a lab dish.



Time-lapse movie showing the formation of a DNA nanotube bridge (green) between two molecular landmarks (red and blue) that are separated by 6 microns. The movie is 5,000 times sped up with respect to real time.

CREDIT Nature Nanotechnology, 2016, Abdul M. Mohammed, et alia

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells

Baltimore, MD | Posted on January 9th, 2017

The team captured examples of this unusual nanoscale performance on video.

This self-assembling bridge process, which may someday be used to connect electronic medical devices to living cells, was reported by the team recently in the journal Nature Nanotechnology.

To describe this process, senior author Rebecca Schulman, an assistant professor of chemical and biomolecular engineering in the university's Whiting School of Engineering, referred to a death-defying stunt shown in the movie "Man on Wire." The film depicted Philippe Petit's 1974 high-wire walk between the World Trade Center's Twin Towers.

Schulman pointed out that the real-life crossing could not have been accomplished without a critical piece of old-fashioned engineering: Petit's hidden partner used a bow and arrow to launch the wire across the chasm between the towers, allowing it to be secured to each structure.

"A feat like that was hard to do on a human scale," Schulman said. "Could we ask molecules to do the same thing? Could we get molecules to build a 'bridge' between other molecules or landmarks on existing structures?"

The paper's lead author, Abdul Mohammed, a postdoctoral fellow in Schulman's lab, used another analogy to describe the molecular bridge-building feat they demonstrated at the nanoscale level. "If this process were to happen at the human scale," Mohammed said, "it would be like one person casting a fishing line from one side of a football field and trying to hook a person standing on the other side."

To accomplish this task, the researchers turned to DNA nanotubes. These microscopic building blocks, formed by short sequences of synthetic DNA, have become popular materials in the emerging nanotechnology construction field. The sequences are particularly useful because of their ability to assemble themselves into long, tube-like structures known as DNA nanotubes.

In the Johns Hopkins study, these building blocks attached themselves to separate molecular anchor posts, representing where the connecting bridge would begin and end. The segments formed two nanotube chains, each one extending away from its anchor post. Then, like spaghetti in a pot of boiling water, the lengthening nanotube chains wriggled about, exploring their surroundings in a random fashion. Eventually, this movement allowed the ends of the two separate nanotube strands to make contact with one another and snap together to form a single connecting bridge span.

To learn more about how this process occurs, the researchers used microscopes to watch the nanotubes link to their molecular landmarks, which were labeled with different colored fluorescent dyes and attached to transparent glass. The team's video equipment also captured the formation of nanotubes spans, as the two bridge segments lengthened and ultimately connected. Completion of the nanoscale bridge in the accompanying example took about six hours, but the team's videos were sped up significantly to enable a more rapid review. Depending on how far apart the molecular anchor posts were located, the connection process took anywhere from several hours to two days.

The ability to assemble these bridges, the researchers say, suggests a new way to build medical devices that use wires, channels or other devices that could "plug in" to molecules on a cell's surface. Such technologies could be used to understand nerve cell communication or to deliver therapeutics with unprecedented precision. Molecular bridge-building, the researchers said, is also a step toward building networked devices and "cities" at the nanoscale, enabling new components of a machine or factory to communicate with one another.

###

John Zenk, who recently received his Ph.D. at Johns Hopkins, and Petr Šulc, a postdoctoral fellow at Rockefeller University, were co-authors on this study. This research was supported by DOE grant DE-SC0010595, which provided money for materials, supplies and computing time; NSF CAREER award 125387; and the Simons Foundation, which supported Sulc.

Photo, schematic and video available; contact Phil Sneiderman.

####

For more information, please click here

Contacts:
Phil Sneiderman

443-997-9907

Copyright © Johns Hopkins University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Molecular Nanotechnology

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Nanobiotechnology

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project