Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells

Steps for building DNA nanotube connections between molecular landmarks.
CREDIT
Nature Nanotechnology, 2016, Abdul M. Mohammed et alia
Steps for building DNA nanotube connections between molecular landmarks. CREDIT Nature Nanotechnology, 2016, Abdul M. Mohammed et alia

Abstract:
In a microscopic feat that resembled a high-wire circus act, Johns Hopkins researchers have coaxed DNA nanotubes to assemble themselves into bridge-like structures arched between two molecular landmarks on the surface of a lab dish.



Time-lapse movie showing the formation of a DNA nanotube bridge (green) between two molecular landmarks (red and blue) that are separated by 6 microns. The movie is 5,000 times sped up with respect to real time.

CREDIT Nature Nanotechnology, 2016, Abdul M. Mohammed, et alia

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells

Baltimore, MD | Posted on January 9th, 2017

The team captured examples of this unusual nanoscale performance on video.

This self-assembling bridge process, which may someday be used to connect electronic medical devices to living cells, was reported by the team recently in the journal Nature Nanotechnology.

To describe this process, senior author Rebecca Schulman, an assistant professor of chemical and biomolecular engineering in the university's Whiting School of Engineering, referred to a death-defying stunt shown in the movie "Man on Wire." The film depicted Philippe Petit's 1974 high-wire walk between the World Trade Center's Twin Towers.

Schulman pointed out that the real-life crossing could not have been accomplished without a critical piece of old-fashioned engineering: Petit's hidden partner used a bow and arrow to launch the wire across the chasm between the towers, allowing it to be secured to each structure.

"A feat like that was hard to do on a human scale," Schulman said. "Could we ask molecules to do the same thing? Could we get molecules to build a 'bridge' between other molecules or landmarks on existing structures?"

The paper's lead author, Abdul Mohammed, a postdoctoral fellow in Schulman's lab, used another analogy to describe the molecular bridge-building feat they demonstrated at the nanoscale level. "If this process were to happen at the human scale," Mohammed said, "it would be like one person casting a fishing line from one side of a football field and trying to hook a person standing on the other side."

To accomplish this task, the researchers turned to DNA nanotubes. These microscopic building blocks, formed by short sequences of synthetic DNA, have become popular materials in the emerging nanotechnology construction field. The sequences are particularly useful because of their ability to assemble themselves into long, tube-like structures known as DNA nanotubes.

In the Johns Hopkins study, these building blocks attached themselves to separate molecular anchor posts, representing where the connecting bridge would begin and end. The segments formed two nanotube chains, each one extending away from its anchor post. Then, like spaghetti in a pot of boiling water, the lengthening nanotube chains wriggled about, exploring their surroundings in a random fashion. Eventually, this movement allowed the ends of the two separate nanotube strands to make contact with one another and snap together to form a single connecting bridge span.

To learn more about how this process occurs, the researchers used microscopes to watch the nanotubes link to their molecular landmarks, which were labeled with different colored fluorescent dyes and attached to transparent glass. The team's video equipment also captured the formation of nanotubes spans, as the two bridge segments lengthened and ultimately connected. Completion of the nanoscale bridge in the accompanying example took about six hours, but the team's videos were sped up significantly to enable a more rapid review. Depending on how far apart the molecular anchor posts were located, the connection process took anywhere from several hours to two days.

The ability to assemble these bridges, the researchers say, suggests a new way to build medical devices that use wires, channels or other devices that could "plug in" to molecules on a cell's surface. Such technologies could be used to understand nerve cell communication or to deliver therapeutics with unprecedented precision. Molecular bridge-building, the researchers said, is also a step toward building networked devices and "cities" at the nanoscale, enabling new components of a machine or factory to communicate with one another.

###

John Zenk, who recently received his Ph.D. at Johns Hopkins, and Petr Šulc, a postdoctoral fellow at Rockefeller University, were co-authors on this study. This research was supported by DOE grant DE-SC0010595, which provided money for materials, supplies and computing time; NSF CAREER award 125387; and the Simons Foundation, which supported Sulc.

Photo, schematic and video available; contact Phil Sneiderman.

####

For more information, please click here

Contacts:
Phil Sneiderman

443-997-9907

Copyright © Johns Hopkins University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Videos/Movies

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

Govt.-Legislation/Regulation/Funding/Policy

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Molecular Nanotechnology

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Moving nanoparticles using light and magnetic fields January 25th, 2018

Self Assembly

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displays’ back-reflectors June 27th, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

Nanomedicine

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Discoveries

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Announcements

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

Nanobiotechnology

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Arrowhead Presents New Clinical Data on ARO-AAT at Alpha-1 National Education Conference July 1st, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project