Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > First use of graphene to detect cancer cells: System able to detect activity level of single interfaced cell

Normal and cancerous brain cells interfaced with graphene show different activity levels under Raman imaging.
CREDIT
UIC/Vikas Berry
Normal and cancerous brain cells interfaced with graphene show different activity levels under Raman imaging. CREDIT UIC/Vikas Berry

Abstract:
What can't graphene do? You can scratch "detect cancer" off of that list.

By interfacing brain cells onto graphene, researchers at the University of Illinois at Chicago have shown they can differentiate a single hyperactive cancerous cell from a normal cell, pointing the way to developing a simple, noninvasive tool for early cancer diagnosis.

First use of graphene to detect cancer cells: System able to detect activity level of single interfaced cell

Chicago, IL | Posted on December 20th, 2016

"This graphene system is able to detect the level of activity of an interfaced cell," says Vikas Berry, associate professor and head of chemical engineering at UIC, who led the research along with Ankit Mehta, assistant professor of clinical neurosurgery in the UIC College of Medicine.

"Graphene is the thinnest known material and is very sensitive to whatever happens on its surface," Berry said. The nanomaterial is composed of a single layer of carbon atoms linked in a hexagonal chicken-wire pattern, and all the atoms share a cloud of electrons moving freely about the surface.

"The cell's interface with graphene rearranges the charge distribution in graphene, which modifies the energy of atomic vibration as detected by Raman spectroscopy," Berry said, referring to a powerful workhorse technique that is routinely used to study graphene.

The atomic vibration energy in graphene's crystal lattice differs depending on whether it's in contact with a cancer cell or a normal cell, Berry said, because the cancer cell's hyperactivity leads to a higher negative charge on its surface and the release of more protons.

"The electric field around the cell pushes away electrons in graphene's electron cloud," he said, which changes the vibration energy of the carbon atoms. The change in vibration energy can be pinpointed by Raman mapping with a resolution of 300 nanometers, he said, allowing characterization of the activity of a single cell.

The study, reported in the journal ACS Applied Materials & Interfaces, looked at cultured human brain cells, comparing normal astrocytes to their cancerous counterpart, the highly malignant brain tumor glioblastoma multiforme. The technique is now being studied in a mouse model of cancer, with results that are "very promising," Berry said. Experiments with patient biopsies would be further down the road.

"Once a patient has brain tumor surgery, we could use this technique to see if the tumor relapses," Berry said. "For this, we would need a cell sample we could interface with graphene and look to see if cancer cells are still present."

The same technique may also work to differentiate between other types of cells or the activity of cells.

"We may be able to use it with bacteria to quickly see if the strain is Gram-positive or Gram-negative," Berry said. "We may be able to use it to detect sickle cells."

Earlier this year, Berry and other coworkers introduced nanoscale ripples in graphene, causing it to conduct differently in perpendicular directions, useful for electronics. They wrinkled the graphene by draping it over a string of rod-shaped bacteria, then vacuum-shrinking the germs.

"We took the earlier work and sort of flipped it over," Berry said. "Instead of laying graphene on cells, we laid cells on graphene and studied graphene's atomic vibrations."

###

Co-authors on the study are Bijentimala Keisham and Phong Nguyen of UIC chemical engineering and Arron Cole of UIC neurosurgery.

Funding was provided by UIC.

####

For more information, please click here

Contacts:
Bill Burton

312-996-2269

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Cancer

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Graphene/ Graphite

Researchers printed graphene-like materials with inkjet August 17th, 2017

2 Dimensional Materials

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Imaging

Industry’s First Dedicated Cryo-DualBeam System Automates Preparation of Frozen, Biological Samples: New Thermo Scientific Aquilos FIB/SEM protects sample integrity and enhances productivity for cryo-electron tomography workflow August 8th, 2017

Thermo Fisher Scientific Advances Cryo-EM Leadership to Drive Structural Biology Discoveries: New Thermo Scientific Krios G3i raises bar for performance, automation and time-to-results Breakthrough Thermo Scientific Glacios provides a cryo-EM entry path for a broader range of res August 8th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

Possible Futures

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Nanomedicine

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Discoveries

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Materials/Metamaterials

Researchers printed graphene-like materials with inkjet August 17th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Tools

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

Nanobiotechnology

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project