Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New graphene-based system could help us see electrical signaling in heart and nerve cells: Berkeley-Stanford team creates a system to visualize faint electric fields

This photo shows the setup for a system known as CAGE (Critically coupled waveguide-Amplified Graphene Electric field imaging device) that is designed to precisely record the properties of faint electrical signals using an infrared laser and a layer of graphene. The CAGE platform can be used to image the electrical signals of living cells.
CREDIT
Halleh Balch and Jason Horng/Berkeley Lab and UC Berkeley
This photo shows the setup for a system known as CAGE (Critically coupled waveguide-Amplified Graphene Electric field imaging device) that is designed to precisely record the properties of faint electrical signals using an infrared laser and a layer of graphene. The CAGE platform can be used to image the electrical signals of living cells. CREDIT Halleh Balch and Jason Horng/Berkeley Lab and UC Berkeley

Abstract:
Scientists have enlisted the exotic properties of graphene, a one-atom-thick layer of carbon, to function like the film of an incredibly sensitive camera system in visually mapping tiny electric fields in a liquid. Researchers hope the new method will allow more extensive and precise imaging of the electrical signaling networks in our hearts and brains.

New graphene-based system could help us see electrical signaling in heart and nerve cells: Berkeley-Stanford team creates a system to visualize faint electric fields

Berkeley, CA | Posted on December 19th, 2016

The ability to visually depict the strength and motion of very faint electrical fields could also aid in the development of so-called lab-on-a-chip devices that use very small quantities of fluids on a microchip-like platform to diagnose disease or aid in drug development, for example, or that automate a range of other biological and chemical analyses. The setup could potentially be adapted for sensing or trapping specific chemicals, too, and for studies of light-based electronics (a field known as optoelectronics).

A new way to visualize electric fields

"This was a completely new, innovative idea that graphene could be used as a material to sense electrical fields in a liquid," said Jason Horng, a co-lead author of a study published Dec. 16 in Nature Communications that details the first demonstration of this graphene-based imaging system. Horng is affiliated with the Kavli Energy NanoSciences Institute, a joint institute at Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley, and is a postdoctoral researcher at UC Berkeley.

The idea sprang from a conversation between Feng Wang, a faculty scientist in Berkeley Lab's Materials Sciences Division whose research focuses on the control of light-matter interactions at the nanoscale, and Bianxiao Cui, who leads a research team at Stanford University that specializes in the study of nerve-cell signaling. Wang is also a UC Berkeley associate professor of physics, and Cui is an associate professor of chemistry at Stanford University.

"The basic concept was how graphene could be used as a very general and scalable method for resolving very small changes in the magnitude, position, and timing pattern of a local electric field, such as the electrical impulses produced by a single nerve cell," said Halleh B. Balch, a co-lead author in the work. Balch is also affiliated with the Kavli Energy NanoSciences Institute and is a physics PhD student at UC Berkeley.

"One of the outstanding problems in studying a large network of cells is understanding how information propagates between them," Balch said.

Other techniques have been developed to measure electrical signals from small arrays of cells, though these methods can be difficult to scale up to larger arrays and in some cases cannot trace individual electrical impulses to a specific cell.

Also, Cui said, "This new method does not perturb cells in any way, which is fundamentally different from existing methods that use either genetic or chemical modifications of the cell membrane."

The new platform should more easily permit single-cell measurements of electrical impulses traveling across networks containing 100 or more living cells, researchers said.

Tapping graphene's light-absorbing properties

Graphene, which is composed of a honeycomb arrangement of carbon atoms, is the focus of intense R&D because of its incredible strength, ability to very efficiently conduct electricity, high degree of chemical stability, the speed at which electrons can move across its surface, and other exotic properties. Some of this research is focused on the use of graphene as a component in computer circuits and display screens, in drug delivery systems, and in solar cells and batteries.

In the latest study, researchers first used infrared light produced at Berkeley Lab's Advanced Light Source to understand the effects of an electric field on graphene's absorption of infrared light.

In the experiment, they aimed an infrared laser through a prism to a thin layer called a waveguide. The waveguide was designed to precisely match graphene's light-absorbing properties so that all of the light was absorbed along the graphene layer in the absence of an electric field.

Researchers then fired tiny electrical pulses in a liquid solution above the graphene layer that very slightly disrupted the graphene layer's light absorption, allowing some light to escape in a way that carried a precise signature of the electrical field. Researchers captured a sequence of images of this escaping light in thousandths-of-a-second intervals, and these images provided a direct visualization of the electrical field's strength and location along the surface of the graphene.

Millionths-of-a-volt sensitivity

The new imaging platform -- dubbed CAGE for "Critically coupled waveguide-Amplified Graphene Electric field imaging device" -- proved sensitive to voltages of a few microvolts (millionths of a volt). This will make it ultrasensitive to the electric fields between cells in networks of heart cells and nerve cells, which can range from tens of microvolts to a few millivolts (thousandths of a volt).

Researchers found that they could pinpoint an electric field's location along the graphene sheet's surface down to tens of microns (millionths of a meter), and capture its fading strength in a sequence of time steps separated by as few as five milliseconds, or thousandths of a second.

In one sequence, researchers detailed the position and dissipation, or fade, of a local electric field generated by a 10-thousandths-of-a-volt pulse over a period of about 240 milliseconds, with sensitivity down to about 100 millionths-of-a-volt.

Next up: living heart cells

Balch said that there are already plans to test the platforms with living cells. "We are working with collaborators to test this with real heart cells," she said. "There are several potential applications for this research in heart health and drug screening."

There is also potential to use other atomically thin materials besides graphene in the imaging setup, she said.

"The kind of elegance behind this system comes from its generality," Balch said. "It can be sensitive to anything that carries charge."

###

The research team included participants from Berkeley Lab, UC Berkeley, and Stanford University. The work was supported by the U.S. Department of Energy Office of Science, the National Science Foundation, the David and Lucile Packard Foundation, and the Stanford University Bio-X Graduate Fellowship Program.

The Advanced Light Source is a DOE Office of Science User Facility.

####

About Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Glenn Roberts Jr.

510-486-5582

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

2 Dimensional Materials

Basque researchers turn light upside down February 23rd, 2018

Measuring the temperature of two-dimensional materials at the atomic level February 3rd, 2018

Laboratories

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Atomic Flaws Create Surprising, High-Efficiency UV LED Materials: Subtle surface defects increase UV light emission in greener, more cost-effective LED and catalyst materials February 8th, 2018

Graphene/ Graphite

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

A new radiation detector made from graphene: A new bolometer exploits the thermoelectric properties of graphene February 6th, 2018

Lab-on-a-chip

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

WPI researchers build liquid biopsy chip that detects metastatic cancer cells in blood December 15th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Possible Futures

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Nanomedicine

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

Sensors

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Leti Chief Scientist Barbara De Salvo Will Help Kick Off ISSCC 2018 with Opening-Day Keynote: In Addition, Leti Scientists Will Present and Demo New Technology for Piezoelectric Energy Harvesting February 8th, 2018

Engineers develop flexible, water-repellent graphene circuits for washable electronics January 24th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Discoveries

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Photonics/Optics/Lasers

Basque researchers turn light upside down February 23rd, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project