Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Electron highway inside crystal

Step edges on topological crystalline insulators may lead to electrically conducting pathways where electrons with opposite spin spin move in converse directions -- any U-turn is prohibited. Picture: Thomas Bathon/Paolo Sessi/Matthias Bode
Step edges on topological crystalline insulators may lead to electrically conducting pathways where electrons with opposite spin spin move in converse directions -- any U-turn is prohibited.

Picture: Thomas Bathon/Paolo Sessi/Matthias Bode

Abstract:
Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Electron highway inside crystal

Würzburg, Germany | Posted on December 12th, 2016

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was highlighted again as the Royal Swedish Academy of Sciences in Stockholm awarded this year's Nobel Prize in Physics to three British scientists for their research of so-called topological phase transitions and topological phases of matter.

Topological insulators are also being studied at the Departments for Experimental Physics II and Theoretical Physics I of the University of Würzburg. However, they focus on a special version of insulators called topological crystalline insulators (TCI). In cooperation with the Polish Academy of Sciences in Warsaw and the University of Zurich, Würzburg physicists have now achieved a major breakthrough. They were able to detect new electronic states of matter in these insulators. The results of their work are published in the latest issue of Science.

Step edges direct electrons

The central result: When crystalline materials are split, small atomically flat terraces emerge at the split off surfaces which are separated from each other by step edges. Inside these structures, conductive channels for electrical currents form which are extremely narrow at just about 10 nm and surprisingly robust against external disturbance. Electrons travel on these conductive channels with different spin in opposite directions - similar to a motorway with separate lanes for the two directions. This effect makes the materials interesting for technological applications in future electronic components such as ultra-fast and energy-efficient computers.

"TCIs are relatively simple to produce and they are already different from conventional materials because of their special crystalline structure," Dr. Paolo Sessi explains the background of the recently published paper. Sessi is a research fellow at the Department of Experimental Physics II and the lead author of the study. Moreover, these materials owe their special quality to their electronic properties: In topological materials, the direction of spin determines the direction in which the electrons travel. Simply put, the "spin" can be interpreted as a magnetic dipole that can point in two directions ("up" and "down"). Accordingly, up-spin electrons in TCIs move in one and down-spin electrons in the other direction.

It's all about the number of atomic layers

"But previously scientists didn't know how to produce the conductive channels required to this end," says Professor Matthias Bode, Head of the Department for Experimental Physics II and co-author of the study. It was chance that now got the researchers on the right track: They discovered that very narrow conductive channels occur naturally when splitting lead tin selenide (PbSnSe), a crystalline insulator.

Step edges on the fragments' surfaces cause this phenomenon. They can be imaged using a high-resolution scanning tunnelling microscopy, or more precisely, the height of the corresponding step edges. "Edges that bridge an even number of atomic layers are totally inconspicuous. But if the edges span an odd number of atomic layers, a small area about 10 nm in width is created that has the electronic conductive channels properties we were looking for," Sessi explains.

Pattern breaks off at the edge

Supported by their colleagues from the Department of Theoretical Physics I and the University of Zurich, the experimental physicists were able to shed light on the origin of these new electronic states. To understand the principle, a little spatial sense is required:

"The crystalline structure causes a layout of the atoms where the different elements alternate like the black and white squares on a chessboard," Matthias Bode explains. This alternating black-and-white pattern applies to both squares which are adjacent and squares situated below and on top one another.

So if the crack of this crystal runs through different atomic layers, more than one edge is created there. Seen from above, white squares may also abut to other white squares along this edge and black squares to other black squares - or identical atoms to identical atoms. However, this only works if an odd number of atomic layers is responsible for the difference in height of the two surfaces.

Backed by calculations

"Calculations show that this offset at the surface is actually causative of these novel electronic states," says Paolo Sessi. Furthermore, they prove that the phenomenon of the spin-dependent conductive channels, which is characteristic of topological materials, occurs here as well.

According to the scientists, this property in particular makes the discovery relevant for potential applications, because such conductive channels cause low conduction loss on the one hand and can be used directly to transmit and process information in the field of spintronics on the other.

However, several questions need to be answered and challenges to be overcome before this will become reality. For instance, the scientists are not yet sure over which distances the currents in the newly discovered conductive channels can be transported. Also, in order to be implemented in circuits, methods would have to be developed that allow creating step edges of a defined height along specified directions.

####

For more information, please click here

Contacts:
Dr. Paolo Sessi

49-931-318-8021

Copyright © University of Würzburg

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Videos/Movies

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Possible Futures

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Spintronics

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Making spintronic neurons sing in unison November 18th, 2016

Chip Technology

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Unveils Vision and Roadmap for Next-Generation 5G Applications: Technology platforms are uniquely positioned to enable a new era of ‘connected intelligence’ with the transition to 5G September 20th, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Discoveries

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Materials/Metamaterials

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Announcements

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Research partnerships

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project