Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Micro-bubbles make big impact: Research team develops new ultrasound-powered actuator to develop micro robot

Abstract:
The quest to develop a wireless micro-robot for biomedical applications requires a small-scale "motor" that can be wirelessly powered through biological media. While magnetic fields can be used to power small robots wirelessly, they do not provide selectivity since all actuators (the components controlling motion) under the same magnetic field just follow the same motion. To address this intrinsic limitation of magnetic actuation, a team of German researchers has developed a way to use microbubbles to provide the specificity needed to power micro-robots for biomedical applications.

Micro-bubbles make big impact: Research team develops new ultrasound-powered actuator to develop micro robot

Washington, DC | Posted on November 25th, 2016

This week in Applied Physics Letters, from AIP Publishing, the team describes this new approach that offers multiple advantages over previous techniques.

"First, by applying ultrasound at different frequencies, multiple actuators can be individually addressed; second, the actuators require no on-board electronics which make them smaller, lighter and safer; and third, the approach is scalable to the sub-millimeter size," said Tian Qiu, a researcher at the Max Planck Institute for Intelligent Systems in Germany.

The research team encountered some surprises along the way. Normally a special material, like a magnetic or piezoelectric material, is required for an actuator. In this case, they used a standard commercial polymer that simply traps air bubbles, and then used the air-liquid interface of the trapped bubbles to convert the ultrasound power into mechanical motion.

"We found that a thin surface (30-120 micrometers effective thickness) with appropriate topological patterning can provide propulsion force using ultrasound, and thousands of these bubbles together can push a device at millimeter scale," Qiu said. "The simplicity of the structure and material to accomplish this task was a pleasant surprise."

The team is already looking forward to developing their actuator further.

"The next steps are to increase the propulsive force of the functional surface, to integrate the actuator into a useful biomedical device, and then to test it in a real biological environment, including in vivo," Qiu said.

The adoption of micro-structured surfaces as wireless actuators opens promising new possibilities in the development of miniaturized devices and tools for fluidic environments accessible by low intensity ultrasound fields. These functional surfaces could serve as ready-to-attach wireless actuators, powering miniaturized biomedical devices for applications such as active endoscopes.

####

About American Institute of Physics
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See apl.aip.org.

For more information, please click here

Contacts:
AIP Media Line

301-209-3090

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Wireless actuation with functional acoustic surfaces," is authored by T. Qiu, S. Palagi, A.G. Mark, K. Melde, F. Adams and P. Fischer. The article will appear in the journal Applied Physics Letter on November 22, 2016 (DOI: 10.1063/1.4945311). After that date, it can be accessed at:

Related News Press

Magnetism

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

News and information

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Robotics

Cleaning or Etching Items with Unique Geometries Requires Specialized Expertise June 27th, 2018

Ancient paper art, kirigami, poised to improve smart clothing: New research shows how paper-cutting can make ultra strong, stretchable electronics April 3rd, 2018

Moving nanoparticles using light and magnetic fields January 25th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Possible Futures

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Molecular Machines

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Discoveries

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Announcements

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project