Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > HKU chemists develop world's first light-seeking synthetic Nanorobot

Dr Tang Yinyao showing the disc which contains millions of synthetic light-seeking nanorobots
CREDIT
The University of Hong Kong
Dr Tang Yinyao showing the disc which contains millions of synthetic light-seeking nanorobots CREDIT The University of Hong Kong

Abstract:
A team of researchers led by Dr Jinyao Tang of the Department of Chemistry, the University of Hong Kong, has developed the world's first light-seeking synthetic Nano robot. With size comparable to a blood cell, those tiny robots have the potential to be injected into patients' bodies, helping surgeons to remove tumors and enabling more precise engineering of targeted medications. The findings have been published in October earlier in leading scientific journal Nature Nanotechnology.

HKU chemists develop world's first light-seeking synthetic Nanorobot

Hong Kong, China | Posted on November 9th, 2016

It has been a dream in science fiction for decades that tiny robots can fundamentally change our daily life. The famous science fiction movie "Fantastic Voyage" is a very good example, with a group of scientists driving their miniaturized Nano-submarine inside human body to repair a damaged brain. In the film "Terminator 2", billions of Nanorobots were assembled into the amazing shapeshifting body: the T-1000. In the real world, it is quite challenging to make and design a sophisticated Nano robot with advanced functions.

The Nobel Prize in Chemistry 2016 was awarded to three scientists for "the design and synthesis of molecular machines". They developed a set of mechanical components at molecular scale which may be assembled into more complicated Nano machines to manipulate single molecule such as DNA or proteins in the future. The development of tiny nanoscale machines for biomedical applications has been a major trend of scientific research in recent years. Any breakthroughs will potentially open the door to new knowledge and treatments of diseases and development of new drugs.

One difficulty in Nanorobot design is to make these nanostructures sense and respond to the environment. Given each Nanorobot is only a few micrometer in size which is ~50 times smaller than the diameter of a human hair, it is very difficult to squeeze normal electronic sensors and circuits into Nanorobots with reasonable price. Currently, the only method to remotely control Nanorobots is to incorporate tiny magnetic inside the Nanorobot and guide the motion via external magnetic field.

The Nanorobot developed by Dr Tang's team use light as the propelling force, and is the first research team globally to explore the light-guided Nanorobot and demonstrate its feasibility and effectiveness. In their paper published in Nature Nanotechnology, Dr Tang's team demonstrated the unprecedented ability of these light-controlled Nanorobots as they are "dancing" or even spell a word under light control. With a novel Nanotree structure, the Nanorobots can respond to the light shining on it like moths being drawn to flames. Dr Tang described the motions as if "they can "see" the light and drive itself towards it".

The team gained inspiration from natural green algae for the Nanorobot design. In nature, some green algae have evolved with the ability of sensing light around it. Even just a single cell, these green algae can sense the intensity of light and swim towards the light source for photosynthesis. Dr Jinyao Tang's team spent three years to successfully develop the Nanorobots. With a novel Nanotree structure, they are composed of two common and low-price semiconductor materials: silicon and titanium oxide. During the synthesis, silicon and titanium oxide are shaped into nanowire and then further arranged into a tiny Nanotree heterostructure.

Dr Tang said: "Although the current Nanorobot cannot be used for disease treatment yet, we are working on the next generation nanorobotic system which is more efficient and biocompatible."

"Light is a more effective option to communicate between microscopic world and macroscopic world. We can conceive that more complicated instructions can be sent to Nanorobots which provide scientists with a new tool to further develop more functions into Nanorobot and get us one step closer to daily life applications," he added.

####

For more information, please click here

Contacts:
Cindy Chan

852-391-75286

Copyright © The University of Hong Kong

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Abstract of journal article "Programmable artificial phototactic microswimmer":

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Possible Futures

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Molecular Machines

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Molecular Nanotechnology

Moving nanoparticles using light and magnetic fields January 25th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Nanomedicine

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

Discoveries

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Nanobiotechnology

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

Photonics/Optics/Lasers

Basque researchers turn light upside down February 23rd, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project