Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Crystal clear imaging: Infrared brings to light nanoscale molecular arrangement: Berkeley Lab and University of Colorado-Boulder team develop new way to reveal crystal features in functional materials

This image shows the crystal shape and height of a material known as PTCDA, with height represented by the shading (white is taller, darker orange is lowest). The white scale bar represents 500 nanometers. The illustration at bottom is a representation of the crystal shape.
CREDIT
Berkeley Lab, CU-Boulder
This image shows the crystal shape and height of a material known as PTCDA, with height represented by the shading (white is taller, darker orange is lowest). The white scale bar represents 500 nanometers. The illustration at bottom is a representation of the crystal shape. CREDIT Berkeley Lab, CU-Boulder

Abstract:
Detailing the molecular makeup of materials -- from solar cells to organic light-emitting diodes (LEDs) and transistors, and medically important proteins -- is not always a crystal-clear process.

Crystal clear imaging: Infrared brings to light nanoscale molecular arrangement: Berkeley Lab and University of Colorado-Boulder team develop new way to reveal crystal features in functional materials

Berkeley, CA | Posted on October 17th, 2016

To understand how materials work at these microscopic scales, and to better design materials to improve their function, it is necessary to not only know all about their composition but also their molecular arrangement and microscopic imperfections.

Now, a team of researchers working at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has demonstrated infrared imaging of an organic semiconductor known for its electronics capabilities, revealing key nanoscale details about the nature of its crystal shapes and orientations, and defects that also affect its performance.

To achieve this imaging breakthrough, researchers from Berkeley Lab's Advanced Light Source (ALS) and the University of Colorado-Boulder (CU-Boulder) combined the power of infrared light from the ALS and infrared light from a laser with a tool known as an atomic force microscope. The ALS, a synchrotron, produces light in a range of wavelengths or "colors" -- from infrared to X-rays -- by accelerating electron beams near the speed of light around bends.

The researchers focused both sources of infrared light onto the tip of the atomic force microscope, which works a bit like a record-player needle -- it moves across the surface of a material and measures the subtlest of surface features as it lifts and dips.

The technique, detailed in a recent edition of the journal Science Advances, allows researchers to tune the infrared light in on specific chemical bonds and their arrangement in a sample, show detailed crystal features, and explore the nanoscale chemical environment in samples.

"Our technique is broadly applicable," said Hans Bechtel an ALS scientist. "You could use this for many types of material -- the only limitation is that it has to be relatively flat" so that the tip of the atomic force microscope can move across its peaks and valleys.

Markus Raschke, a CU-Boulder professor who developed the imaging technique with Eric Muller, a postdoctoral researcher in his group, said, "If you know the molecular composition and orientation in these organic materials then you can optimize their properties in a much more straightforward way.

"This work is informing materials design. The sensitivity of this technique is going from an average of millions of molecules to a few hundred, and the imaging resolution is going from the micron scale (millionths of an inch) to the nanoscale (billionths of an inch)," he said.

The infrared light of the synchrotron provided the essential wide band of the infrared spectrum, which makes it sensitive to many different chemicals' bonds at the same time and also provides the sample's molecular orientation. The conventional infrared laser, with its high power yet narrow range of infrared light, meanwhile, allowed researchers to zoom in on specific bonds to obtain very detailed imaging.

"Neither the ALS synchrotron nor the laser alone would have given us this level of microscopic insight," Raschke said, while the combination of the two provided a powerful probe "greater than the sum of its parts."

Raschke a decade ago first explored synchrotron-based infrared nano-spectroscopy using the BESSY synchrotron in Berlin. With his help and that of ALS scientists Michael Martin and Bechtel, the ALS in 2014 became the first synchrotron to offer nanoscale infrared imaging to visiting scientists.

The technique is particularly useful for the study and understanding of so-called "functional materials" that possess special photonic, electronic, or energy-conversion or energy-storage properties, he noted.

In principle, he added, the new advance in determining molecular orientation could be adapted to biological studies of proteins. "Molecular orientation is critical in determining biological function," Raschke said. The orientation of molecules determines how energy and charge flows across from cell membranes to molecular solar energy conversion materials.

Bechtel said the infrared technique permits imaging resolution down to about 10-20 nanometers, which can resolve features up to 50,000 times smaller than a grain of sand.

The imaging technique used in these experiments, known as "scattering-type scanning near-field optical microscopy," or s-SNOM, essentially uses the atomic force microscope tip as an ultrasensitive antenna, which transmits and receives focused infrared light in the region of the tip apex. Scattered light, captured from the tip as it moves over the sample, is recorded by a detector to produce high-resolution images.

"It's non-invasive, and it provides information about molecular vibrations," as the microscope's tip moves over the sample, Bechtel said. Researchers used the technique to study the crystalline features of an organic semiconductor material known as PTCDA (perylenetetracarboxylic dianhydride).

Researchers reported that they observed defects in the orientation of the material's crystal structure that provide a new understanding of the crystals' growth mechanism and could aid in the design molecular devices using this material.

The new imaging capability sets the stage for a new National Science Foundation Center, announced in late September, that links CU-Boulder with Berkeley Lab, UC Berkeley, Florida International University, UC Irvine, and Fort Lewis College in Durango, Colo. The center will combine a range of microscopic imaging methods, including those that use electrons, X-rays, and light, across a broad range of disciplines.

This center, dubbed STROBE for Science and Technology Center on Real-Time Functional Imaging, will be led by Margaret Murnane, a distinguished professor at CU-Boulder, with Raschke serving as a co-lead.

At Berkeley Lab, STROBE will be served by a range of ALS capabilities, including the infrared beamlines managed by Bechtel and Martin and a new beamline dubbed COSMIC (for "coherent scattering and microscopy"). It will also benefit from Berkeley Lab-developed data analysis tools.

###

Other contributors to the work include Benjamin Pollard and Peter van Blerkom, both members of Raschke's group at CU-Boulder.

The work was supported by the National Science Foundation. The ALS is a DOE Office of Science User Facility.

####

About Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Glenn Roberts Jr.

510-486-5582

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project