Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Project to help bring widespread use of micro-robotics

Abstract:
Micro-robotic manipulators with the ability to move in increments far smaller than the width of a human hair might be enlisted for a range of applications in research, manufacturing, medicine and homeland security.

Project to help bring widespread use of micro-robotics

West Lafayette, IN | Posted on August 3rd, 2016

However, a critical obstacle must first be solved: Researchers don't yet fully understand how to best operate the micro-manipulator bots because of various forces unique to the micro- and nano-scale.

"With an ordinary robot, say you want to pick up a part and move it somewhere," said David Cappelleri, an assistant professor of mechanical engineering at Purdue University. "We understand the physics behind the manipulation of these kinds of robots, and we have a lot of simulation tools and control methodologies to help plan these motions, execute and control them. We are interested in trying to do similar things at the micro scale, but the problem is that the physics at that scale is not really well understood."

Factors including van der Waals' forces, electrostatic and surface tension forces cause "stiction" between tiny components that affect their operation.

"You have stiction - adhesion forces - so it makes everything very unpredictable," said Cappelleri, director of Purdue's Multi-Scale Robotics & Automation Lab. &##160;

He leads a new project that strives to overcome this key obstacle, working with Purdue researchers and co-principal investigators Karthik Ramani, the Donald W. Feddersen Professor of Mechanical Engineering, and Song Zhang, an associate professor of mechanical engineering. The research is funded with a three-year, $1 million grant from the National Science Foundation. (A youtube video is available)

The project could make possible new "motion planners," which can be likened to roadmaps, and specialized surfaces that contain nanometer-scale features on which to operate the micro-robots.

"At the macro-scale you know your car is going to drive forward when you step on the accelerator, you know it's going to go left and right when you turn the steering wheel," Cappelleri said. "At the micro-scale, when we want to manipulate something to go forward it may go to the left or it may go to the right. We don't know because of the uncertainty in the system. So one of the goals of this project is to try to reduce that uncertainty."

The researchers will work to develop a new type of "vision-based force sensor" that uses cameras to precisely measure the motion of robot components. Learning how much a robot's components deform reveals the forces being applied, which is critical for the proper design of micro-robotic system. Zhang will lead work to create a high-resolution 3-D perception system capable of zooming in on specific structures as they move and deform, allowing for highly accurate force calculations.

Ramani will lead another critical part of the research, to "micro-teleoperate" robotic manipulators using a remote-control haptic system that provides feedback, allowing the researchers to feel the forces exerted on robotic structures.

"We can feel what the robot feels, so if the force is too high you back off manipulating the part before it breaks," Cappelleri said.

Resulting data will provide "motion primitives," or a series of motions needed to carry out specific tasks.

"You might have one primitive to move a part in the X direction, another to move it in the Y direction," he said.

Determining the primitives could then allow researchers to design automated systems.

"Eventually, we want fully autonomous, production-level systems for industry and research applications," Cappelleri said.

Three doctoral students will be involved in the research.

Some of the research will be performed at the Birck Nanotechnology Center in Purdue's Discovery Park.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Sources:
David J. Cappelleri
765-494-3719


Karthik Ramani
765-494-5725


Song Zhang
765-496-0389

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Song Zhang's lab: XYZT Lab:

Karthik Ramani's C-Design Lab:

Related News Press

News and information

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Videos/Movies

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

DNA origami to scale-up molecular motors June 13th, 2019

Robotics

Kanazawa University research: Opposite piezoresistant effects of rhenium disulfide in two principle directions June 13th, 2019

DNA origami to scale-up molecular motors June 13th, 2019

Shaking hands with human or robot? Nanotubes make them alike as never before June 6th, 2019

Possible Futures

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Nanomedicine

A molecular glue to overcome cancer drug resistance? Small molecule drug may prevent chemotherapy resistance June 7th, 2019

Arrowhead Pharmaceuticals to Present at Upcoming June 2019 Conferences June 2nd, 2019

Chemists build a better cancer-killing drill: Rice U.-designed molecular motors get an upgrade for activation with near-infrared light May 29th, 2019

Light and nanotechnology combined to prevent biofilms on medical implants May 24th, 2019

Discoveries

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Announcements

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Homeland Security

A bullet-proof heating pad November 2nd, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Industrial

Building next gen smart materials with the power of sound May 28th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Better microring sensors for optical applications May 10th, 2019

Ensure Safety and Keep Costs Down: Solving Industrial Challenges with Nanotube-Containing Polyurethane Shafts April 26th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project