Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Syracuse chemists combine biology, nanotechnology to create alternate energy source: New article from Maye Research Group draws on nanoscience, self-assembly

This image shows from left Liliana Karam, Mathew Maye, and Tennyson Doane.
CREDIT: Syracuse University News
This image shows from left Liliana Karam, Mathew Maye, and Tennyson Doane.

CREDIT: Syracuse University News

Abstract:
Chemists in Syracuse University's College of Arts and Sciences have made a transformational advance in an alternate lighting source--one that doesn't require a battery or a plug.

Syracuse chemists combine biology, nanotechnology to create alternate energy source: New article from Maye Research Group draws on nanoscience, self-assembly

Syracuse, NY | Posted on March 2nd, 2016

Associate Professor Mathew Maye and a team of researchers from Syracuse, along with collaborators from Connecticut College, have recently demonstrated high-efficient energy transfer between semiconductor quantum rods and luciferase enzymes. Quantum rods and luciferase enzymes are nanomaterials and biomaterials, respectively. When combined correctly, these materials produce bioluminescence--except, instead of coming from a biomaterial, such as a firefly enzyme, the light eminates from a nanomaterial, and is green, orange, red, or near-infrared in color.

The findings are the subject of a recent article in ACS Nano (American Chemical Society, 2016).

"Think of our system as a design project," Maye says. "Our goal has been to build a nano-biosystem that's versatile enough to teach us a lot, while allowing us to overcome significant challenges in the field and have practical applications. The design involves materials from our chemistry and biology labs, as well as various nanoscience and self-assembly tools. It's a true team effort with multiple collaborations."

Maye illustrates his point by referencing quantum rods, each of which is four nanometers wide and 50 nanometers long. (A nanometer is 1 billionth of a meter.) "The rods were chemically synthesized with amazing precision," he says. "To get the best information, we realized that we needed at least two different types of rods, each with three synthetically tuned variations, and up to 10 different assembly conditions."

Having a wide range of variables has enabled Maye and his team to learn more about the science of nano-biology energy transfer.

Prior to becoming a postdoc at the University of Notre Dame, Rabeka Alam G'13 led the project at Syracuse as a Ph.D. student. She says this work illuminates a special kind of interaction known as bioluminescence resonance energy transfer (BRET). "In nanoscience, a quantum dot or rod is typically an energy donor," she says. "In our case, the energy came from bioluminescent luciferase."

With BRET, the enzyme is attached to the surface of the rod. Luciferin is added, and acts as a kind of fuel. When the enzyme and fuel interact, they release an energy that is transferred to the rod, causing it to glow.

"The trick to increasing the efficiency [of BRET] is finding the right donor-acceptor combination, which requires different rods and enzymes," says Liliana Karam, a Syracuse Ph.D. student who currently heads up the project. "Thanks to our colleagues at Connecticut College, we have genetically manipulated enzymes of multiple colors that are attached to the rods, which, in turn, are prepared in our lab at Syracuse."

Maye says the quantum rods are composed of semi-conductive elements--specifically, an outer shell of cadmium sulfide and an inner core of cadmium selenide. By manipulating the size and shape of the core, the length of the rod, and the way the enzymes are attached and packed onto the surface of the rod, researchers are able to alter the color and intensity of the light that is emitted, thus demonstrating the overall efficiency of the process.

Postodc Tennyson Doane, a senior member of the Maye Research Group, says one of the breakthroughs of the project involves a special type of rod known as a "rod-in-rod." The group has been hypothesizing why this particular rod results in high-efficiency gains.

"When you have a rod-shaped core, the resulting fluorescence is polarized, meaning circular light comes in, and linearly polarized light comes out," says Doane, adding that the shape of the material makes BRET more efficient. "We believe that, when aligned correctly with the luciferase-excited state, the rod experiences efficiency gains that otherwise are not witnessed in a self-assembled nanosystem. Controlling the enzyme location and bioluminescence polarization may, one day, lead to novel 'light switches," in which only certain enzymes around the quantum rod are able to interact via BRET."

Maye calls this "using biology for non-biological applications."

"Our nanorods are made of the same materials used in computer chips, solar panels, and LED [light-emitting diode] lights. At the moment, our system works best in the red to near-infrared range, which has longer wavelengths than visible light, and is invisible to the eye," he says, alluding to night-vision goggles, medical imaging, and rapid microbial detection. "Our work is patent-pending at Syracuse. Perhaps, we'll someday have firefly-covered nanorods that can be inserted into LED lights and don't require a plug."

###

Maye's and Branchini's projects are both supported by the Air Force Office of Scientific Research. Maye's work has also been supported by a Presidential Early Career Award for Scientists and Engineers (PECASE) from the U.S. Department of Defense, a faculty fellowship from the Forensic & National Security Sciences Institute in A&S, and a Dean's Professor fellowship from A&S.

Additional support comes from the Syracuse Biomaterials Institute and the Center for Functional Nanomaterials at Brookhaven National Laboratory, the latter of which is supported by the U.S. Department of Energy.

####

For more information, please click here

Contacts:
Rob Enslin

315-443-3403

Copyright © Syracuse University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project