Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Nanodiamonds might prevent tooth loss after root canals: UCLA Dentistry research finds that the tiny particles strengthen the compound used to fill teeth and ward off infection

American Chemical Society/Dong-Keun Lee
A 3-D image of a tooth filled with nanodiamond-enhanced gutta percha, and an individual gutta percha point.
American Chemical Society/Dong-Keun Lee

A 3-D image of a tooth filled with nanodiamond-enhanced gutta percha, and an individual gutta percha point.

Abstract:
People undergoing root canals may have gained a powerful, if tiny, new ally. Researchers from the UCLA School of Dentistry have found that using nanodiamonds to fortify a material used in the procedure could significantly improve outcomes for patients.

Nanodiamonds might prevent tooth loss after root canals: UCLA Dentistry research finds that the tiny particles strengthen the compound used to fill teeth and ward off infection

Los Angeles, CA | Posted on October 19th, 2015

A paper on their research is published in the current issue of the peer-reviewed journal ACS Nano.

Nanodiamonds are tiny particles formed as byproducts of diamond refining and mining. Thousands of times smaller than the width of a human hair, they have been widely explored for use in dentistry, cancer therapy, imaging and regenerative medicine, among other applications.

Each year, more than 15 million root canal procedures are performed in the United States. Dentists' goal is to save their patients' teeth from infected dental "pulp" -- the part of the tooth that includes blood vessels and nerve tissue. During a root canal, inflamed dental pulp is removed and the empty space is then filled in with a polymer called gutta percha, which is used in part because it does not react within the body. But some root canals don't entirely remove the infection, and residual infection after root canals can lead to tooth loss.

In addition, traditional gutta percha has certain shortcomings, including a limited capacity to ward off infection and less-than-optimal rigidity.

To overcome those issues, the UCLA team developed and tested two types of reinforced gutta percha: One strengthened with nanodiamonds and another strengthened with nanodiamonds that had been pre-loaded with antibiotics.

To evaluate the first type, Sue Vin Kim and Adelheid Nerisa Limansubroto, study co-authors who are UCLA Dentistry students, filled actual teeth from human patients. Using conventional radiography and micro-computed tomography, or micro-CT, they showed that the nanodiamond-enhanced gutta percha could be used to fill the tooth. Like the traditional formulation, the nanodiamond-enhanced compound did leave small gaps in the canal -- where harmful bacteria could grow -- but the CT imaging showed that the enhanced material filled the space just as effectively as traditional gutta percha.

"Validating this novel material in teeth extracted from patients serves as a strong foundation for the potential translation of nanodiamond-reinforced gutta percha toward clinical testing," said Dean Ho, a senior author of the study and a professor of oral biology and medicine and co-director of UCLA Dentistry's Jane and Jerry Weintraub Center for Reconstructive Biotechnology.

In the research's second phase, the scientists tested nanodiamonds that had been loaded with amoxicillin, a broad-spectrum antibiotic used to combat infection. The drug-reinforced nanodiamonds, when combined with the gutta percha, effectively prevented bacteria growth.

"The nanodiamond-enhanced gutta percha combines many desirable properties into a single platform, including vastly improved mechanical characteristics and the ability to combat bacterial infection following a root canal," said Dong-Keun Lee, a postdoctoral scholar in Ho's lab.

The study involved UCLA researchers with expertise in a wide range of disciplines -- materials science, nanotechnology, drug delivery, toxicology, oral radiology, endodontics, microbiology and other fields.

"Through their ingenuity and collaboration, Professor Ho's team is poised to transform the way that dentistry is practiced," said Dr. No-Hee Park, dean of UCLA Dentistry and a co-author of the study.

During the next two years, the team plans optimize the formulation of the nanodiamond-reinforced gutta percha and begin clinical trials at UCLA.

###

Ho is also a professor of bioengineering and member of the UCLA Jonsson Comprehensive Cancer Center and the California NanoSystems Institute at UCLA. Other authors of the study were Albert Yen of the UCLA department of bioengineering and UCLA Dentistry; and Akrivoula Soundia, Yong Kim, Wenyuan Shi, Dr. Christine Hong, Dr. Sotirios Tetradis, Dr. Cun-Yu Wang and Dr. Mo Kang, all of UCLA Dentistry.

The study was supported by the National Cancer Institute, the National Science Foundation, the Wallace H. Coulter Foundation, the V Foundation for Cancer Research, the Society for Laboratory Automation and Screening, and Beckman Coulter Life Sciences.

####

For more information, please click here

Contacts:
Brianna Aldrich

310-206-0835

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

New fiber-shaped supercapacitor for wearable electronics April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

Govt.-Legislation/Regulation/Funding/Policy

New fiber-shaped supercapacitor for wearable electronics April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

Nanomedicine

A light-activated remote control for cells April 17th, 2019

Arrowhead Pharmaceuticals Receives FDA Clearance to Begin Phase 2/3 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease April 15th, 2019

Arrowhead Presents Clinical Data on JNJ-3989 (ARO-HBV) at The International Liver Congress™ April 12th, 2019

'Nanobodies' from alpacas could help bring CAR T-cell therapy to solid tumors: Unusually small antibodies, targeted to the tumor micro-environment, curb melanoma and colon cancer in mouse models April 11th, 2019

Discoveries

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

New fiber-shaped supercapacitor for wearable electronics April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

Materials/Metamaterials

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

Mystery of negative capacitance in perovskite solar cells solved April 5th, 2019

Announcements

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

New fiber-shaped supercapacitor for wearable electronics April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

New fiber-shaped supercapacitor for wearable electronics April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

'Nanobodies' from alpacas could help bring CAR T-cell therapy to solid tumors: Unusually small antibodies, targeted to the tumor micro-environment, curb melanoma and colon cancer in mouse models April 11th, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

'Deep learning' casts wide net for novel 2D materials: Rice U. engineers show faster techniques to model atom-flat materials for bottom-up design April 10th, 2019

Dental

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

Dental plaque is no match for catalytic nanoparticles: Twice-daily rinses of FDA-approved nanoparticles broke apart oral biofilms and prevented tooth decay in a study led by Penn researchers August 8th, 2018

Detecting the birth and death of a phonon June 7th, 2018

MEET THE WOMAN BEHIND THE NANOTECHNOLOGY THAT REVOLUTIONIZED DENTAL CARE May 1st, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project