Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanodiamonds might prevent tooth loss after root canals: UCLA Dentistry research finds that the tiny particles strengthen the compound used to fill teeth and ward off infection

American Chemical Society/Dong-Keun Lee
A 3-D image of a tooth filled with nanodiamond-enhanced gutta percha, and an individual gutta percha point.
American Chemical Society/Dong-Keun Lee

A 3-D image of a tooth filled with nanodiamond-enhanced gutta percha, and an individual gutta percha point.

Abstract:
People undergoing root canals may have gained a powerful, if tiny, new ally. Researchers from the UCLA School of Dentistry have found that using nanodiamonds to fortify a material used in the procedure could significantly improve outcomes for patients.

Nanodiamonds might prevent tooth loss after root canals: UCLA Dentistry research finds that the tiny particles strengthen the compound used to fill teeth and ward off infection

Los Angeles, CA | Posted on October 19th, 2015

A paper on their research is published in the current issue of the peer-reviewed journal ACS Nano.

Nanodiamonds are tiny particles formed as byproducts of diamond refining and mining. Thousands of times smaller than the width of a human hair, they have been widely explored for use in dentistry, cancer therapy, imaging and regenerative medicine, among other applications.

Each year, more than 15 million root canal procedures are performed in the United States. Dentists' goal is to save their patients' teeth from infected dental "pulp" -- the part of the tooth that includes blood vessels and nerve tissue. During a root canal, inflamed dental pulp is removed and the empty space is then filled in with a polymer called gutta percha, which is used in part because it does not react within the body. But some root canals don't entirely remove the infection, and residual infection after root canals can lead to tooth loss.

In addition, traditional gutta percha has certain shortcomings, including a limited capacity to ward off infection and less-than-optimal rigidity.

To overcome those issues, the UCLA team developed and tested two types of reinforced gutta percha: One strengthened with nanodiamonds and another strengthened with nanodiamonds that had been pre-loaded with antibiotics.

To evaluate the first type, Sue Vin Kim and Adelheid Nerisa Limansubroto, study co-authors who are UCLA Dentistry students, filled actual teeth from human patients. Using conventional radiography and micro-computed tomography, or micro-CT, they showed that the nanodiamond-enhanced gutta percha could be used to fill the tooth. Like the traditional formulation, the nanodiamond-enhanced compound did leave small gaps in the canal -- where harmful bacteria could grow -- but the CT imaging showed that the enhanced material filled the space just as effectively as traditional gutta percha.

"Validating this novel material in teeth extracted from patients serves as a strong foundation for the potential translation of nanodiamond-reinforced gutta percha toward clinical testing," said Dean Ho, a senior author of the study and a professor of oral biology and medicine and co-director of UCLA Dentistry's Jane and Jerry Weintraub Center for Reconstructive Biotechnology.

In the research's second phase, the scientists tested nanodiamonds that had been loaded with amoxicillin, a broad-spectrum antibiotic used to combat infection. The drug-reinforced nanodiamonds, when combined with the gutta percha, effectively prevented bacteria growth.

"The nanodiamond-enhanced gutta percha combines many desirable properties into a single platform, including vastly improved mechanical characteristics and the ability to combat bacterial infection following a root canal," said Dong-Keun Lee, a postdoctoral scholar in Ho's lab.

The study involved UCLA researchers with expertise in a wide range of disciplines -- materials science, nanotechnology, drug delivery, toxicology, oral radiology, endodontics, microbiology and other fields.

"Through their ingenuity and collaboration, Professor Ho's team is poised to transform the way that dentistry is practiced," said Dr. No-Hee Park, dean of UCLA Dentistry and a co-author of the study.

During the next two years, the team plans optimize the formulation of the nanodiamond-reinforced gutta percha and begin clinical trials at UCLA.

###

Ho is also a professor of bioengineering and member of the UCLA Jonsson Comprehensive Cancer Center and the California NanoSystems Institute at UCLA. Other authors of the study were Albert Yen of the UCLA department of bioengineering and UCLA Dentistry; and Akrivoula Soundia, Yong Kim, Wenyuan Shi, Dr. Christine Hong, Dr. Sotirios Tetradis, Dr. Cun-Yu Wang and Dr. Mo Kang, all of UCLA Dentistry.

The study was supported by the National Cancer Institute, the National Science Foundation, the Wallace H. Coulter Foundation, the V Foundation for Cancer Research, the Society for Laboratory Automation and Screening, and Beckman Coulter Life Sciences.

####

For more information, please click here

Contacts:
Brianna Aldrich

310-206-0835

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

Vertical electrochemical transistor pushes wearable electronics forward: Biomedical sensing is one application of efficient, low-cost transistors January 20th, 2023

Nanomedicine

One of the causes of aggressive liver cancer discovered: a 'molecular staple' that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023

New nanoparticles deliver therapy brain-wide, edit Alzheimer’s gene in mice: UW researchers have found a way to move gene therapies through the blood-brain barrier, a crucial step for brain-wide CRISPR treatments of disorders like Alzheimer's and Parkinson's disease January 20th, 2023

Team undertakes study of two-dimensional transition metal chalcogenides Important biomedical application, including biosensing December 9th, 2022

SLAC/Stanford researchers discover how a nano-chamber in the cell directs protein folding: The results challenge a 70-year-old theory of how proteins fold in our cells and have profound implications for treating diseases linked to protein misfolding December 9th, 2022

Discoveries

One of the causes of aggressive liver cancer discovered: a 'molecular staple' that helps repair broken: DNA Researchers describe a new DNA repair mechanism that hinders cancer treatment January 27th, 2023

Stability of perovskite solar cells reaches next milestone January 27th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Materials/Metamaterials

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Semi-nonlinear etchless lithium niobate waveguide with bound states in the continuum November 4th, 2022

Announcements

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Department of Energy announces $9.1 million for research on quantum information science and nuclear physics: Projects span the development of quantum computing, algorithms, simulators, superconducting qubits, and quantum sensors for advancing nuclear physics January 27th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

Temperature-sensing building material changes color to save energy January 27th, 2023

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals January 27th, 2023

Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

UCF researcher receives Samsung International Global Research Outreach Award: The award from the multinational electronics corporation will fund the development of infrared night vision and thermal sensing camera technology for cell phones and consumer electronics January 27th, 2023

UC Irvine researchers decipher atomic-scale imperfections in lithium-ion batteries: Team used super high-resolution microscopy enhanced by deep machine learning January 27th, 2023

Polymer p-doping improves perovskite solar cell stability January 20th, 2023

New quantum computing architecture could be used to connect large-scale devices: Researchers have demonstrated directional photon emission, the first step toward extensible quantum interconnects January 6th, 2023

Dental

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Innovations in dentistry: Navigational surgery, robotics, and nanotechnology October 2nd, 2020

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Gas storage method could help next-generation clean energy vehicles: Tremendous amounts of hydrogen and methane can be stored in nanoscopic pores April 17th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project