Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Electron tomography with 3,487 images in 3.5 seconds: High-speed electron tomography sets new standards for 3-D images of the nanoworld

This image series serves as a data basis for the reconstruction of the 3-D electron tomogram.

Copyright: Migunov, V. et al. Sci. Rep. 5, 14516, 2015 (CC BY 4.0)
This image series serves as a data basis for the reconstruction of the 3-D electron tomogram.

Copyright: Migunov, V. et al. Sci. Rep. 5, 14516, 2015 (CC BY 4.0)

Abstract:
Scientists from the Ernst Ruska-Centre in Forschungszentrum Jülich used a transmission electron microscope to record almost 3500 images in 3.5 seconds for the reconstruction of a 3D electron tomogram. Previously, 10 to 60 minutes and a ten-fold greater electron dose were required to record such image sequences. The new capability is particularly suitable for examining biological cells, bacteria and viruses, whose structure can be damaged by the electron beam. In addition, it enables dynamic processes, such as chemical reactions and electronic switching phenomena, to be visualized in real time in three dimensions with sub-nanometre precision. The findings have been published in the journal Scientific Reports.

Electron tomography with 3,487 images in 3.5 seconds: High-speed electron tomography sets new standards for 3-D images of the nanoworld

Jülich, Germany | Posted on October 6th, 2015

Electron tomography is related to computed tomography, which has become indispensable in research and clinical studies. Electron tomograms can be obtained from much smaller volumes than with X-ray-based techniques. The three dimensional spatial resolution of electron tomography is the highest achievable with today's technology. The method is uniquely suited for studying viruses and bacteria to facilitate development of medications, or for imaging the structures of novel nanomaterials for applications that range from nanoelectronics to energy technology.

"The ability to accelerate image acquisition and reduce radiation dose opens up new horizons, particularly in life sciences and soft matter research, by electron tomography," says Prof. Rafal Dunin-Borkowski. In this technique, a transmission electron microscope is used to record images of a sub-micrometre-sized region from different angles in quick succession.

"The individual images do not show cross-sections of the sample. Instead, the information from different depths inside it is superposed - similar to an X-ray image - and projected onto a plane," explains the Director of the Ernst Ruska-Centre, who is also Director of the Institute for Microstructure Research (PGI-5) in Jülich's Peter Grünberg Institute. For this reason, algorithms are necessary for a computer to calculate a three-dimensional reconstruction of the object from the series of images.

The resolution that can be achieved is limited by the destructive effect of the electron beam on the sample. Soft, biological samples, in particular, tolerate only a limited number of images. Their sensitive structures, for example those of proteins, are rapidly destroyed by high-energy electrons. In order to reduce the electron dose, the researchers in the Ernst Ruska-Centre equipped their electron microscope with a novel detector. This single electron detection camera registers incoming electrons directly, without needing to convert them into photons, i.e. light - the usual practice today.

"The latest generation of detector chips has very high sensitivity, meaning that for the same image quality an electron beam dose that is two to three times lower suffices," explains Dr. Vadim Migunov, from the Ernst Ruska-Centre and Jülich's Peter Grünberg Institute. His colleagues in Jülich's Central Institute of Engineering, Electronics and Analytics (ZEA-2) helped to develop the electronics in the chip, which ensures fast data read-out speed and thus extremely fast recording rates.

First tests with nanotubes and catalysts In order to test the improved technique, Vadim Migunov, together with his colleagues from the Ernst Ruska-Centre, examined an inorganic lanthanide nanotube using the new sensor. Such structures are currently of interest because they may be suitable for electricity generation from waste heat or as novel light sources and catalysts. With a recording rate of approximatelt 1000 images per second, electron tomography can now be used for nanoscale observations of fast processes such as chemical reactions involving catalysts, crystal growth processes or phase transitions," explains Vadim Migunov.

Studies with better temporal and spatial resolution could help to reveal why nanocatalyst functionality is lost over time. Catalyst nanoparticles can be used to produce hydrogen and to separate harmful greenhouse gases. Their efficiency depends predominantly on how atoms are arranged on the surfaces on which the chemical reactions take place.

The new technique has additional advantages. Only a few seconds of computing time are necessary to record and reconstruct the three-dimensional structure of a specimen on a computer. The time required is thus very short and scientists can observe experiments not only in 3D but also almost "live".

####

For more information, please click here

Contacts:
Tobias Schloesser

49-246-161-4771

Copyright © Forschungszentrum Jülich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Nanobiotechnology

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project