Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > How Graphene–based Nanomaterials and Films Revolutionize Science Explained in July 9 Webinar Hosted by Park Systems

Abstract:
Park Systems, world-leader in atomic force microscopy (AFM) is hosting a webinar to provide advanced scientific research into new classes of Nanoscale Graphene-based materials poised to revolutionize industries such as semiconductor, material science, bio science and energy. Touted as 'the wonder material of the 21st Century' by the researchers who were awarded the 2010 Nobel Prize in physics for their graphene research, this carbon-based lightweight material is 200 times stronger than steel and one of the most promising and versatile materials ever discovered.

How Graphene–based Nanomaterials and Films Revolutionize Science Explained in July 9 Webinar Hosted by Park Systems

Santa Clara, CA | Posted on June 29th, 2015

The Park Systems Webinar titled Graphene Based Nanomaterials and Films will be given by Professor Rigoberto Advincula of Case Western Reserve University on July 9, 2015 at 9am PST. Prof. Advincula is an eminent professor, researcher and expert in the area of polymers, smart coatings, nanomaterials, surface analytical methods for a variety of applications.

“The discovery of graphene is but a continuing evolution on how we analyze, treat, synthesize carbon based nanomaterials which includes the fullerenes, nanotubes, and now C polymorph platelets called graphene,” explains Dr. Advincula. “Graphene is used in many areas of research and potential applications for electronics, solid-state devices, biosensors, coatings and much more for numerous industries where there are opportunities to make quantum improvements in methods and materials.”

Graphene is part of the C polymorph family of nanomaterials and because of the platy nature of the basal plane, it’s reactivity on the edges, and various redox forms, it is an excellent thin film additive and component that can be grown by vapor deposition methods as well as exfoliation. Current research into dispersion, preparations, and patterning of graphene using Park Systems AFM to identify nanoscale characteristics and surface properties as well as conductivity indicates that numerous breakthroughs in materials and chemicals are on the horizon.

“Park AFM is the natural tool to investigate Graphene’s adsorbed state on a flat substrate as well as characterize its surface properties and conductivity because of the reliability and accuracy of the equipment,” adds Dr. Advincula who will give the Webinar on July 9. “AFM is useful in understanding the surface properties of these products but is equally valuable in failure analysis because of the capability to do in-situ or real time measurements of failure with a temperature stage or a magnetic field.”

Graphene-based Nanomaterials offer many innovations in industries such as electronics, semiconductor, life science, material science and bio science. Some potential advancements already being researched include flexible electronics, anti bacterial paper, actuators, electrochoromic devices and transistors.

“Park Systems is presenting this webinar as part of Park Nano Academy, which will offer valuable education and shared knowledge across many Nano Science Disciplines and Industries as a way to further enable NanoScale advancements,” comments Keibock Lee, Park Systems President. “We invite all curious Nano Researchers to join our webinars and educational forums to launch innovative ideas that propel us into future Nano Scientific Technologies.”

The webinar will highlight how the research into is conducted and present some of the findings by Professor Rigoberto Advincula of Case Western Reserve University.

This webinar is available at no cost and is part of Park Systems Nano Academy.

To register go to: www.parkafm.com/index.php/medias/nano-academy/webinars/115-webinars/486-nanomaterials-webinar-july-9-2015

About the Webinar

Title: Graphene–based Nanomaterials and Films
Date: July 9, 2015
Time: 9am PST

To Register, go to: www.parkafm.com/index.php/medias/nano-academy/webinars/115-webinars/486-nanomaterials-webinar-july-9-2015

Pre-requisite: Appreciation of nanocomposites and additives in formulations is preferred but not required.

About Prof. Rigoberto Advincula

Prof. Rigoberto Advincula, Director of the Petro Case Consortium, is recognized industry-wide as an expert regarding polymers and materials including challenges inthe oil-gas industry. He is currently a Professor with the Department of Macromolecular Science and Engineering at Case Western Reserve University and is the recipient of numerous awards including Fellow of the American Chemical Society, Herman Mark Scholar Award of the Polymer Division, and Humboldt Fellow.

####

About Park Systems
Park Systems is a world-leading manufacturer of atomic force microscopy (AFM) systems with a complete range of products for researchers and industry engineers in chemistry, materials, physics, life sciences, semiconductor and data storage industries. Park’s products are used by over a thousand of institutions and corporations worldwide. Park’s AFM provides highest data accuracy at nanoscale resolution, superior productivity, and lowest operating cost thanks to its unique technology and innovative engineering. Park Systems, Inc. is headquartered in Santa Clara, California with its global manufacturing, and R&D headquarters in Korea. Park’s products are sold and supported worldwide with regional headquarters in the US, Korea, Japan, and Singapore, and distribution partners throughout Europe, Asia, and America. Please visit www.parkafm.com or call 408-986-1110 for more information.

For more information, please click here

Copyright © Park Systems

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Events/Classes

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project