Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene heat-transfer riddle unraveled

This is Amin Salehi-Khojin, UIC assistant professor of mechanical and industrial engineering.
CREDIT: Robert Dupuis-Devlin
This is Amin Salehi-Khojin, UIC assistant professor of mechanical and industrial engineering.

CREDIT: Robert Dupuis-Devlin

Abstract:
Researchers have solved the long-standing conundrum of how the boundary between grains of graphene affects heat conductivity in thin films of the miracle substance -- bringing developers a step closer to being able to engineer films at a scale useful for cooling microelectronic devices and hundreds of other nano-tech applications.

Graphene heat-transfer riddle unraveled

Chicago, IL | Posted on June 17th, 2015

The study, by researchers at the University of Illinois at Chicago, the University of Massachusetts-Amherst and Boise State University, is published online in Nano Letters.

Since its discovery, graphene -- a single layer of carbon atoms linked in a chicken-wire pattern -- has attracted intense interest for its phenomenal ability to conduct heat and electricity. Virtually every nanotech device could benefit from graphene's extraordinary ability to dissipate heat and optimize electronic function, says Poya Yasaei, UIC graduate student in mechanical and industrial engineering and first author on the paper.

In a two-year, multidisciplinary investigation, the researchers developed a technique to measure heat transfer across a single grain boundary -- and were surprised to find that it was an order of magnitude -- a full 10 times -- lower than the theoretically predicted value. They then devised computer models that can explain the surprising observations from the atomic level to the device level.

Graphene films for nanotech applications are made up of many tiny graphene crystals, says Amin Salehi-Khojin, UIC assistant professor of mechanical and industrial engineering and principal investigator on the study. Producing films large enough for practical use introduces flaws at the boundaries between the crystals that make up the film.

Salehi-Khojin's team developed a finely tuned experimental system that lays down a graphene film onto a silicon-nitrate membrane only four-millionths of an inch thick and can measure the transfer of heat from one single graphene crystal to another. The system is sensitive to even the tiniest perturbations, such as a nanometer-scale grain boundary, says co-author Reza Hantehzadeh, a former UIC graduate student now working at Intel.

When two crystals are neatly lined up, heat transfer occurs just as predicted by theory. But if the two crystals have mis-aligned edges, the heat transfer is 10 times less.

To account for the order-of-magnitude difference, a team led by Fatemeh Khalili-Araghi, UIC assistant professor of physics and co-principal investigator on the paper, devised a computer simulation of heat transfer between grain boundaries at the atomic level.

Khalili-Araghi's group found that when the computer "built" grain boundaries with different mismatch angles, the grain boundary was not just a line, it was a region of disordered atoms. The presence of a disordered region significantly affected the heat transfer rate in their computer model and can explain the experimental values.

"With larger mismatched angles, this disordered region could be even wider or more disordered," she said.

To realistically simulate mismatched grain boundaries and natural heat transfer, it was necessary to model the synthesis of a large area of graphene film, with grains growing and coalescing -- a very complex simulation, Khalili-Araghi said, which required the "enormous computing power" of UIC's High Performance Computing Cluster.

"With our simulation we can see exactly what is going on at an atomic level," said co-author Arman Fathizadeh, UIC postdoctoral research associate in physics. "Now we can explain several factors -- the shape and size of the grain boundaries, and the effect of the substrate."

###

Zlatan Aksamija, of the University of Massachusetts-Amherst, is co-principal investigator and did the Boltzman transport modeling and calculation of the phonon transport through the grain boundaries. Craig Foster, associate professor of civil and material engineering at UIC, extended the scale of the computer model. Ahmed El-Ghandour of UIC, Arnab K. Majee of UMass-Amherst, and David Estrada of Boise State University are other co-authors on the paper.

The research was supported by UIC through the Start-up budget and through startup funds from Boise State University as part of a gift from the Micron Foundation. Computer simulations were carried out at the HPC cluster at UIC and on the Blue Waters machine at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, supported through the National Science Foundation awards OCI-0725070 and ACI-1238993, allocated through the Great Lakes Consortium for Petascale Computation.

####

For more information, please click here

Contacts:
Jeanne Galatzer-Levy

312-996-1583

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

Park Systems Announces Grand Opening Ceremony for Their New Office in Beijing China November 19th, 2018

Bosch provides customized IoT and Industry 4.0 solutions: Bosch Mondeville and Bosch Connected Devices and Solutions collaborate to meet a wide variety of customer requirements November 16th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

Graphene/ Graphite

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

The National Graphene Association Is Excited To Announce A New Affiliate Partnership With Graphene Engineering Innovation Centre (GEIC) November 7th, 2018

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

A bullet-proof heating pad November 2nd, 2018

Physics

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

Chemistry

Nanotech Artisans Sculpt with DNA November 5th, 2018

Thin films

Eco-friendly waterproof polymer films synthesized using novel method October 31st, 2018

Rice U. scientists form flat tellurium: Two-dimensional element shows promise for solar cells and other optoelectronics October 26th, 2018

How to mass produce cell-sized robots: Technique from MIT could lead to tiny, self-powered devices for environmental, industrial, or medical monitoring October 24th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Chip Technology

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

Nanometrics Completes Acquisition of 4D Technology Corporation: The addition of Dynamic Interferometry® expands process control technology solutions November 16th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Nanoelectronics

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

Machine learning helps improving photonic applications September 28th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

Discoveries

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Announcements

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

Park Systems Announces Grand Opening Ceremony for Their New Office in Beijing China November 19th, 2018

Bosch provides customized IoT and Industry 4.0 solutions: Bosch Mondeville and Bosch Connected Devices and Solutions collaborate to meet a wide variety of customer requirements November 16th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

Eco-friendly waterproof polymer films synthesized using novel method October 31st, 2018

Research partnerships

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

The National Graphene Association Is Excited To Announce A New Affiliate Partnership With Graphene Engineering Innovation Centre (GEIC) November 7th, 2018

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

Tiny light detectors work like gecko ears October 30th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project