Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion

This is an artist's concept of cell hemifusion.
CREDIT: Peter Allen
This is an artist's concept of cell hemifusion.

CREDIT: Peter Allen

Abstract:
Cells are biological wonders. Throughout billions of years of existence on Earth, these tiny units of life have evolved to collaborate at the smallest levels in promoting, preserving and protecting the organism they comprise. Among these functions is the transport of lipids and other biomacromolecules between cells via membrane adhesion and fusion -- processes that occur in many biological functions, including waste transport, egg fertilization and digestion.

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion

Santa Barbara, CA | Posted on May 27th, 2015

At the University of California, Santa Barbara, chemical engineers have developed a way to directly observe both the forces present and the behavior that occurs during cell hemifusion, a process by which only the outer layers of the lipid bilayer of cell membranes merge. While many different techniques have been used to observe membrane hemifusion, simultaneous measurements of membrane thickness and interaction forces present a greater challenge, according to Dong Woog Lee, lead author of a paper that appears in the journal Nature Communications.

'It is hard to simultaneously image hemifusion and measure membrane thickness and interaction forces due to the technical limitations,' he said.

However, by combining the capabilities of the Surface Forces Apparatus (SFA) -- a device that can measure the tiny forces generated by the interaction of two surfaces at the sub-nano scale -- and simultaneous imaging using a fluorescence microscope, the researchers were able to see in real time how the cell membranes rearrange in order to connect and open a fusion conduit between them. The SFA was developed in Professor Jacob Israelachvili's Interfacial Sciences Lab at UCSB. Israelachvili is a faculty member in the Department of Chemical Engineering at UCSB.

To capture real time data on the behavior of cell membranes during hemifusion, the researchers pressed together two supported lipid bilayers on the opposing surfaces of the SFA. These bilayers consisted of lipid domains -- collections of lipids that in non-fusion circumstances are organized in more or less regularly occurring or mixed arrangements within the cell membrane.

'We monitored these lipid domains to see how they reorganize and relocate during hemifusion,' said Lee. The SFA measured the forces and distances between the two membrane surfaces as they were pushed together, visualized at the Ångstrom (one-tenth of a nanometer) level. Meanwhile, fluorescent imaging made it possible to see the action as the more ordered-phase (more solid) domains reorganized and allowed the more disordered-phase (more fluid) domains to concentrate at the point of contact.

'This is the first time observing fluorescent images during a hemifusion process simultaneously with how the combined thickness of the two bilayers evolve to form a single layer,' said Lee. This rearrangement of the domains, he added, lowers the amount of energy needed during the many processes that require membrane fusion. At higher pressures, according to the study, the extra energy activates faster hemifusion of the lipid layers.

Lipid domains have been seen in many biological cell membranes, and have been linked to various diseases such as multiple sclerosis, Alzheimer's disease and lung diseases. According to the researchers, this novel device could be used to diagnose, provide a marker for, or study dynamic transformations in situations involving lipid domains in pathological membranes. The fundamental insights provided by this device could also prove useful for other materials in which dynamic changes occur between membranes, including surfactant monolayers and bilayers, biomolecules, colloidal particles, surfactant-coated nanoparticles and smart materials.

####

For more information, please click here

Contacts:
Sonia Fernandez

805-893-4765

Copyright © University of California - Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Nanobiotechnology

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project