Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Studying dynamics of ion channels

Location of the potassium channel KcsA in the cell membrane of bacteria. The schematic illustration on the right shows the changes in strength and direction of vibrational coupling inside the filter depending on the ion species, as found by the study.
CREDIT: Copyright: David S. Goodsell & RCSB Protein Data Bank
Location of the potassium channel KcsA in the cell membrane of bacteria. The schematic illustration on the right shows the changes in strength and direction of vibrational coupling inside the filter depending on the ion species, as found by the study.

CREDIT: Copyright: David S. Goodsell & RCSB Protein Data Bank

Abstract:
Ion channels are essential structures of life. Ion channels are specialized pores in the cell membrane and move charged atoms known as ions in and out of cells, thereby controlling a wide variety of biological processes including brain function and heartbeat. Ion channels are generally selective for certain ions, allowing specific types of ions to flow through at very high rates, while hindering the flow of others. On the basis of this selective permeability, ion channels are classified as potassium channels, sodium channels, etc.

Studying dynamics of ion channels

Vienna, Austria | Posted on May 18th, 2015

The cell's most ubiquitous gateways are potassium ion channels - the importance of this type of ion channels was underpinned in 2003 when Roderick MacKinnon received the Nobel Prize in Chemistry for resolving the first atomic structure of the bacterial KcsA potassium channel.

Despite a large body of work, the exact molecular details underlying ion selectivity and transport of the potassium channel remain unclear. "Since conventional methods, such as X-ray crystallography, capture only averaged frozen structures, it is not possible to investigate how the dynamic of the protein could be involved in key aspects of their function", explains physicist Alipasha Vaziri, a joint group leader at the Max F. Perutz Laboratories (MFPL) and the Institute of Molecular Pathology (IMP) and head of the research platform "Quantum Phenomena & Nanoscale Biological Systems" (QuNaBioS) of the University of Vienna.

New method to unravel the secret of ion channel selectivity

Vaziri's team, together with researchers at the Institute for Biophysical Dynamics (University of Chicago), have now used infrared (IR) spectroscopy coupled with molecular dynamic-based simulations of the obtained spectra to investigate the subtlest changes in the shape of the KcsA potassium channel that are induced by binding either potassium or the only 0.04 nanometers smaller sodium ion. This combination proved to be a powerful tool to disentangle convoluted IR spectra - which contain contributions from the whole protein - by assigning each part of the spectrum to the amino acids that contribute to it.

"This new approach allows us to probe these mechanisms in a non perturbative way, meaning without tedious and expensive isotope labeling strategies. Moreover, it opens the way to study the structure and dynamics of ion channels on their biologically relevant timescales by extending it to two-dimensional infrared spectroscopy", says Christoph Götz, PhD student in the Vaziri lab and co-author of the paper.

The study shows for the first time that the combination of the two methods can be used to detect subtle conformational changes in large membrane proteins, such as the KcsA potassium channel. Furthermore, it opens the way to capture the dynamics of proteins in real time at atomic resolution, which has been impossible with standard techniques until now.

####

For more information, please click here

Contacts:
Alipasha Vaziri

43-179-730-3540

Copyright © University of Vienna

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication in the Journal of Physical Chemistry B: Paul Stevenson, Christoph Götz, Carlos R. Baiz, Jasper Akerboom, Andrei Tokmakoff and Alipasha Vaziri: Visualizing KcsA Conformational Changes upon Ion Binding by Infrared Spectroscopy and Atomistic Modeling. In: The Journal of Physical Chemistry B (April 2015). DOI:

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Nanobiotechnology

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project