Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Exotic states materialize with supercomputers

This picture tells quite a story to scientists. It's a portrait of what they call a topological insulator, materials that conduct only at their edges. Technically it shows the edge density of states calculated for a monolayer transition metal dichalcogenide in the 1T'-MoS2 structural phase. There's a black gap between the purple blobs at the bottom and top. What's more, there's crisscrossing reddish lines that bridge the gap. The lines indicate the edge state of the material, allowing electrons to cross the gap and conduct electricity.
Credit: Qian et. al.
This picture tells quite a story to scientists. It's a portrait of what they call a topological insulator, materials that conduct only at their edges. Technically it shows the edge density of states calculated for a monolayer transition metal dichalcogenide in the 1T'-MoS2 structural phase. There's a black gap between the purple blobs at the bottom and top. What's more, there's crisscrossing reddish lines that bridge the gap. The lines indicate the edge state of the material, allowing electrons to cross the gap and conduct electricity.

Credit: Qian et. al.

Abstract:
Scientists used supercomputers to find a new class of materials that possess an exotic state of matter known as the quantum spin Hall effect. The researchers published their results in the journal Science in December 2014, where they propose a new type of transistor made from these materials.

Exotic states materialize with supercomputers

Austin, TX | Posted on February 12th, 2015

The science team included Ju Li, Liang Fu, Xiaofeng Qian, and Junwei Liu, experts in topological phases of matter and two-dimensional materials research at the Massachusetts Institute of Technology (MIT). They calculated the electronic structures of the materials using the Stampede and Lonestar supercomputers of the Texas Advanced Computing Center.

The computational allocation was made through XSEDE, the Extreme Science and Engineering Discovery Environment, a single virtual system funded by the National Science Foundation (NSF) that scientists use to interactively share computing resources, data and expertise. The study was funded by the U.S. Department of Energy and the NSF.

"To me, national computing resources like XSEDE, or specifically the Stampede and Lonestar supercomputers, are extremely helpful to computational scientists," Xiaofeng Qian said. In January 2015, Qian left MIT to join Texas A&M University as the first tenure-track assistant professor at its newly formed Department of Materials Science and Engineering.

What Qian and colleagues did was purely theoretical work, using Stampede for part of the calculations that modeled the interactions of atoms in the novel materials, two-dimensional transition metal dichalcogenides (TMDC). Qian used the molecular dynamics simulation software Vienna Ab initio Simulation Package to model a unit cell of atoms, the basic building block of the crystal lattice of TMDC.

"If you look at the unit cell, it's not large. They are just a few atoms. However, the problem is that we need to predict the band structure of charge carriers in their excited states in the presence of spin coupling as accurately as possible," Qian said.

Scientists diagram the electronic band structure of materials to show the energy ranges an electron is allowed, with the band gap showing forbidden zones that basically block the flow of current. Spin coupling accounts for the electromagnetic interactions between electron's spin and magnetic field generated from the electron's motion around the nucleus.

The complexity lies in the details of these interactions, for which Qian applied many-body perturbation theory with the GW approximation, a state-of-the-art first principles method, to calculate the quasiparticle electronic structures for electrons and holes. The 'G' is short for Green's Function and 'W' for screened Coulomb interaction, Qian explained.

This diagram illustrates the concept behind the MIT team's vision of a new kind of electronic device based on 2-D materials. The 2-D material is at the middle of a layered "sandwich," with layers of another material, boron nitride, at top and bottom (shown in gray). When an electric field is applied to the material, by way of the rectangular areas at top, it switches the quantum state of the middle layer (yellow areas). The boundaries of these "switched" regions act as perfect quantum wires, potentially leading to new electronic devices with low losses. (Credit: Yan Lian, MIT.) "In order to carry out these calculations to obtain reasonable convergence in the results, we have to use 96 cores, sometimes even more," Qian said. "And then we need them for 24 hours. The Stampede computer is very efficient and powerful. The work that we have been showing is not just one material; we have several other materials as well as different conditions. In this sense, access to the resources, especially Stampede, is very helpful to our project."

The big picture for Qian and his colleagues is the hunt for new kinds of materials with extraordinarily useful properties. Their target is room-temperature quantum spin Hall insulators, which are basically near-two-dimensional materials that block current flow everywhere except along their edges. "Along the edges you have the so-called spin up electron flow in one direction, and at the same time you have spin down electrons and flows away in the opposite direction," Qian explained. "Basically, you can imagine, by controlling the injection of charge carriers, one can come up with spintronics, or electronics."

The scientists in this work proposed a topological field-effect transistor, made of sheets of hexagonal boron interlaced with sheets of TMDC. "We found a very convenient method to control the topological phase transition in these quantum spin Hall interlayers," Qian said. "This is very important because once we have this capability to control the phase transition, we can design some electronic devices that can be controlled easily through electrical fields."

Qian stressed that this work lays the theoretical ground for future real experiments in the lab. He hopes it might develop into an actual transistor suitable for a quantum computer, basically an as-yet-unrealized machine that manipulates data beyond just the binary of ones and zeros.

"So far, we haven't looked into the detailed applications for quantum computing yet," Qian said. "However, it is possible to combine these materials with superconductors and come up with the so-called Majorana fermion zero mode for quantum computing."

####

For more information, please click here

Contacts:
Faith Singer-Villalobos

512-232-5771

Copyright © University of Texas at Austin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

New way to control electrical charge in 2D materials: Put a flake on it January 15th, 2021

Superconductivity

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Transition metal 'cocktail' helps make brand new superconductors: Concept of high entropy alloys provides a discovery platform for new superconductors January 8th, 2021

Theory describes quantum phenomenon in nanomaterials: Osaka City University scientists have developed mathematical formulas to describe the current and fluctuations of strongly correlated electrons in quantum dots. Their theoretical predictions could soon be tested experimentally December 25th, 2020

Hardware

A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUMí19 October 14th, 2019

Chip Technology

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

New way to control electrical charge in 2D materials: Put a flake on it January 15th, 2021

Quantum Computing

Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021

Quantum computers to study the functioning of the molecules of life: A team of theoretical physicists from the University of Trento has shown that it is possible to use quantum computers to simulate processes of great biological importance, such as changes in the shape of protein January 15th, 2021

Stretching diamond for next-generation microelectronics January 5th, 2021

Microfabricated elastic diamonds improve material's electronic properties January 1st, 2021

Discoveries

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

Announcements

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Quantum computers to study the functioning of the molecules of life: A team of theoretical physicists from the University of Trento has shown that it is possible to use quantum computers to simulate processes of great biological importance, such as changes in the shape of protein January 15th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Research partnerships

Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021

Nanocrystals that eradicate bacteria biofilm January 8th, 2021

Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma December 30th, 2020

Researchers develop new way to break reciprocity law: The breakthrough makes a significant step forward in photonics and microwave technology by eliminating the need for bulky magnets December 29th, 2020

Quantum nanoscience

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

Microfabricated elastic diamonds improve material's electronic properties January 1st, 2021

Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma December 30th, 2020

Theory describes quantum phenomenon in nanomaterials: Osaka City University scientists have developed mathematical formulas to describe the current and fluctuations of strongly correlated electrons in quantum dots. Their theoretical predictions could soon be tested experimentally December 25th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project