Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Instant-start computers possible with new breakthrough

Abstract:
To encode data, today's computer memory technology uses electric currents - a major limiting factor for reliability and shrinkability, and the source of significant power consumption. If data could instead be encoded without current - for example, by an electric field applied across an insulator - it would require much less energy, and make things like low-power, instant-on computing a ubiquitous reality.

Instant-start computers possible with new breakthrough

Ithaca, NY | Posted on December 19th, 2014

A team at Cornell University led by postdoctoral associate John Heron, who works jointly with Darrell Schlom, professor of Industrial Chemistry in the Department of Materials Science and Engineering, and Dan Ralph, professor of Physics in the College of Arts and Sciences, has made a breakthrough in that direction with a room-temperature magnetoelectric memory device. Equivalent to one computer bit, it exhibits the holy grail of next-generation nonvolatile memory: magnetic switchability, in two steps, with nothing but an electric field. Their results were published online Dec. 17 in Nature.

"The advantage here is low energy consumption," Heron said. "It requires a low voltage, without current, to switch it. Devices that use currents consume more energy and dissipate a significant amount of that energy in the form of heat. That is what's heating up your computer and draining your batteries."

The researchers made their device out of a compound called bismuth ferrite, a favorite among materials mavens for a spectacularly rare trait: It's both magnetic - like a fridge magnet, it has its own, permanent local magnetic field - and also ferroelectric, meaning it's always electrically polarized, and that polarization can be switched by applying an electric field. Such so-called ferroic materials are typically one or the other, rarely both, as the mechanisms that drive the two phenomena usually fight each other.

This combination makes it a "multiferroic" material, a class of compounds that has enjoyed a buzz over the last decade or so. Paper co-author Ramamoorthy Ramesh, Heron's Ph.D. adviser at University of California, Berkeley, first showed in 2003 that bismuth ferrite can be grown as extremely thin films and can exhibit enhanced properties compared to bulk counterparts, igniting its relevance for next-generation electronics.

Because it's multiferroic, bismuth ferrite can be used for nonvolatile memory devices with relatively simple geometries. The best part is it works at room temperature; other scientists, including Schlom's group, have demonstrated similar results with competing materials, but at unimaginably cold temperatures, like 4 Kelvin (-452 Fahrenheit) - not exactly primed for industry. "The physics has been exciting, but the practicality has been absent," Schlom said.

A key breakthrough by this team was theorizing, and experimentally realizing, the kinetics of the switching in the bismuth ferrite device. They found that the switching happens in two distinct steps. One-step switching wouldn't have worked, and for that reason theorists had previously thought what they have achieved was impossible, Schlom said. But since the switching occurs in two steps, bismuth ferrite is technologically relevant.

The multiferroic device also seems to require an order of magnitude lower energy than its chief competitor, a phenomenon called spin transfer torque, which Ralph also studies, and that harnesses different physics for magnetic switching. Spin transfer torque is already used commercially but in only limited applications.

They have some work to do; for one thing they made just a single device, and computer memory involves billions of arrays of such devices. They need to ramp up its durability, too. But for now, proving the concept is a major leap in the right direction.

"Ever since multiferroics came back to life around 2000, achieving electrical control of magnetism at room temperature has been the goal," Schlom said.

####

For more information, please click here

Contacts:
Syl Kacapyr

607-255-7701

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, "Deterministic Switching of Ferromagnetism at Room Temperature Using an Electric Field," includes collaborators from University of Connecticut; University of California, Berkeley; Tsinghua University; and Swiss Federal Institute of Technology in Zurich. The research was supported by the National Science Foundation and the Kavli Institute at Cornell for Nanoscale Science, of which Ralph and Schlom are both members:

Related News Press

News and information

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Hardware

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Building nanomaterials for next-generation computing: Scientists recently developed a blueprint to fabricate new nanoheterostructures using 2D materials June 1st, 2018

Novel method to fabricate nanoribbons from speeding nano droplets May 29th, 2018

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Chip Technology

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Scientists create antilaser for ultracold atoms condensate August 16th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Memory Technology

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

A molecular switch at the edge of graphene July 27th, 2018

Magnetic skyrmions: Not the only ones of their class: Jülich researchers discover a new type of magnetic particle-like object for data storage devices of the future June 28th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Discoveries

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Announcements

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project