Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Instant-start computers possible with new breakthrough

Abstract:
To encode data, today's computer memory technology uses electric currents - a major limiting factor for reliability and shrinkability, and the source of significant power consumption. If data could instead be encoded without current - for example, by an electric field applied across an insulator - it would require much less energy, and make things like low-power, instant-on computing a ubiquitous reality.

Instant-start computers possible with new breakthrough

Ithaca, NY | Posted on December 19th, 2014

A team at Cornell University led by postdoctoral associate John Heron, who works jointly with Darrell Schlom, professor of Industrial Chemistry in the Department of Materials Science and Engineering, and Dan Ralph, professor of Physics in the College of Arts and Sciences, has made a breakthrough in that direction with a room-temperature magnetoelectric memory device. Equivalent to one computer bit, it exhibits the holy grail of next-generation nonvolatile memory: magnetic switchability, in two steps, with nothing but an electric field. Their results were published online Dec. 17 in Nature.

"The advantage here is low energy consumption," Heron said. "It requires a low voltage, without current, to switch it. Devices that use currents consume more energy and dissipate a significant amount of that energy in the form of heat. That is what's heating up your computer and draining your batteries."

The researchers made their device out of a compound called bismuth ferrite, a favorite among materials mavens for a spectacularly rare trait: It's both magnetic - like a fridge magnet, it has its own, permanent local magnetic field - and also ferroelectric, meaning it's always electrically polarized, and that polarization can be switched by applying an electric field. Such so-called ferroic materials are typically one or the other, rarely both, as the mechanisms that drive the two phenomena usually fight each other.

This combination makes it a "multiferroic" material, a class of compounds that has enjoyed a buzz over the last decade or so. Paper co-author Ramamoorthy Ramesh, Heron's Ph.D. adviser at University of California, Berkeley, first showed in 2003 that bismuth ferrite can be grown as extremely thin films and can exhibit enhanced properties compared to bulk counterparts, igniting its relevance for next-generation electronics.

Because it's multiferroic, bismuth ferrite can be used for nonvolatile memory devices with relatively simple geometries. The best part is it works at room temperature; other scientists, including Schlom's group, have demonstrated similar results with competing materials, but at unimaginably cold temperatures, like 4 Kelvin (-452 Fahrenheit) - not exactly primed for industry. "The physics has been exciting, but the practicality has been absent," Schlom said.

A key breakthrough by this team was theorizing, and experimentally realizing, the kinetics of the switching in the bismuth ferrite device. They found that the switching happens in two distinct steps. One-step switching wouldn't have worked, and for that reason theorists had previously thought what they have achieved was impossible, Schlom said. But since the switching occurs in two steps, bismuth ferrite is technologically relevant.

The multiferroic device also seems to require an order of magnitude lower energy than its chief competitor, a phenomenon called spin transfer torque, which Ralph also studies, and that harnesses different physics for magnetic switching. Spin transfer torque is already used commercially but in only limited applications.

They have some work to do; for one thing they made just a single device, and computer memory involves billions of arrays of such devices. They need to ramp up its durability, too. But for now, proving the concept is a major leap in the right direction.

"Ever since multiferroics came back to life around 2000, achieving electrical control of magnetism at room temperature has been the goal," Schlom said.

####

For more information, please click here

Contacts:
Syl Kacapyr

607-255-7701

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, "Deterministic Switching of Ferromagnetism at Room Temperature Using an Electric Field," includes collaborators from University of Connecticut; University of California, Berkeley; Tsinghua University; and Swiss Federal Institute of Technology in Zurich. The research was supported by the National Science Foundation and the Kavli Institute at Cornell for Nanoscale Science, of which Ralph and Schlom are both members:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Hardware

The present and future of computing get a boost from new research July 21st, 2023

A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Memory Technology

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

TUS researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films: The proposed method produces wiring suitable for developing all-carbon devices, including flexible sensors and energy conversion and storage devices March 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project