Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields

Rocker (blue ribbons and yellow sticks) is an artificially designed protein that transports zinc ions (green) across biological membranes (gray sticks) by binding zinc ions it at one end of the molecule and rearranging ('rocking') to pass them onto the other end. The protein was built by researchers from Dartmouth College and other institutions.

Credit: Dartmouth College
Rocker (blue ribbons and yellow sticks) is an artificially designed protein that transports zinc ions (green) across biological membranes (gray sticks) by binding zinc ions it at one end of the molecule and rearranging ('rocking') to pass them onto the other end. The protein was built by researchers from Dartmouth College and other institutions.

Credit: Dartmouth College

Abstract:
Human cells are protected by a largely impenetrable molecular membrane, but researchers have built the first artificial transporter protein that carries individual atoms across membranes, opening the possibility of engineering a new class of smart molecules with applications in fields as wide ranging as nanotechnology and medicine.

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields

Hanover, NH | Posted on December 18th, 2014

The study, which appears Friday, Dec. 19, in the journal Science, is a milestone in designing and understanding membrane proteins. A PDF is available upon request. The study was conducted by researchers from Dartmouth College, the University of California-San Francisco, Massachusetts Institute of Technology and National Institute of Science Educational and Research in India.

Each human cell is surrounded by a lipid membrane, a molecular barrier that serves to contain the cellular machinery and protect it from the surrounding elements. This cellular "skin" is impenetrable to most biological molecules but also presents a conundrum: if chemicals can't get in or out, how is a cell to receive nutrients (food) and remove unwanted products of metabolism (trash)? Nature has come up with an elegant solution to this logistical problem -- transporter proteins (or transporters). These molecular machines are embedded in the cellular membrane and serve as gatekeepers, allowing specific chemicals to shuttle in and out when needed. Though biologists have known about transporters for many decades, their precise mechanism of action has been elusive.

The researchers set out to "build" an artificial transporter protein from scratch, to learn how transporters work, and to open the possibility of engineering a new class of smart molecules. They developed new computational techniques to model the necessary molecular physics, enabling them to design a transporter protein through computer simulation. Specifically, computer simulations suggested which amino-acid building blocks should comprise the future transporter, so that it would carry ionic atoms of metal zinc in one direction across membranes, while pumping protons in the other. Using this computational blueprint, they created the molecule in the lab, referring to it as "Rocker" due to its predicted molecular dynamic properties: the protein was expected to "rock" between two alternating states, allowing it to drive atoms through.

"To our great excitement, experiments showed that Rocker did indeed transport zinc and protons and it did, in fact, rock between two states just as designed," says co-lead author Gevorg Grigoryan (dartmouth.edu/faculty-directory/gevorg-grigoryan), an assistant professor of computer science at Dartmouth. "Further, Rocker showed great selectivity, not transporting ions of calcium, another design feature."

Proteins are nature's workhorse molecules, performing a great variety of tasks in the cell from catalysis and sensing to generation of mechanical work. Learning to design (from first principles) novel protein molecules to perform specific tasks would mean that the immense richness of function that proteins have to offer can be brought to bear in a variety of applications, from better therapeutics to smart materials and clean energy solutions.

"Our findings are an important step forward in this pursuit, demonstrating that through the use of computer simulations to orchestrate precise properties of atomic structure and molecular dynamics, proteins can now be designed to carry out complex functions that rival those of natural molecular machines," Grigoryan says. "Further, our work represents a milestone in designing and understanding membrane proteins, a particularly challenging class of proteins."

####

For more information, please click here

Contacts:
John Cramer

603-646-9130

Assistant Professor
Gevorg Grigoryan
is available to comment at

Copyright © Dartmouth College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project