Home > Press > Unraveling the light of fireflies
![]() |
This detailed microimage shows larger channels branching into smaller ones, supplying oxygen for the firefly's light emission. The smallest channels are ten thousand times smaller than a millimeter and therefore invisible to other experimental probes: this has prevented scientists so far to unlock the mystery of firefly light flashes.
Credit: Giorgio Margaritondo/EPFL |
Abstract:
Fireflies used rapid light flashes to communicate. This "bioluminescence" is an intriguing phenomenon that has many potential applications, from drug testing and monitoring water contamination, and even lighting up streets using glow-in-dark trees and plants. Fireflies emit light when a compound called luciferin breaks down. We know that this reaction needs oxygen, but what we don't know is how fireflies actually supply oxygen to their light-emitting cells. Using state-of-the-art imaging techniques, scientists from Switzerland and Taiwan have determined how fireflies control oxygen distribution to light up their cells. The work is published in Physical Review Letters.
The firefly's light-producing organ is called the "lantern", and it is located in the insect's abdomen. It looks like a series of tubes progressing into smaller ones and so one, like a tree's branches growing into twigs. The function of these tubes, called, is to supply oxygen to the cells of the lantern, which contain luciferase and can produce light. However, the complexity of the firefly's lantern has made it difficult to study this mechanism in depth, and reproduce it for technological applications.
Giorgio Margaritondo at EPFL, Yeukuang Hwu at the Academia Sinica and their colleagues at the National Tsing Hua University in Taiwan have successfully used two sophisticated imaging techniques to overcome the complexity of the firefly lantern and map out how oxygen is supplied to light-emitting cells. The techniques are called synchrotron phase contrast microtomography and transmission x-ray microscopy. They can scan down to the level of a single cell, even allowing researchers to look inside it.
By applying these techniques on live fireflies, the scientists were able to see the entire structure of the lantern for the first time, and to also make quantitative evaluations of oxygen distribution.
The imaging showed that the firefly diverts oxygen from other cellular functions and puts it into the reaction that breaks up luciferin. Specifically, the researchers found that oxygen consumption in the cell decreased, slowing down energy production. At the same time, oxygen supply switched to light-emission.
The study is the first to ever show the firefly's lantern in such detail, while also providing clear evidence that it is optimized for light emission thanks to the state-of-the-art techniques used by the scientists. But Margaritondo points out another innovation: "The techniques we used have an advantage over, say, conventional x-ray techniques, which cannot easily distinguish between soft tissues. By using an approach based on changes in light intensity (phase-contrast) as opposed to light absorption (x-rays), we were able to achieve high-resolution imaging of the delicate firefly lantern."
###
This work represents a collaboration of EPFL with the following institutes in Taiwan: Academia Sinica, the National Tsing Hua University, the Endemic Species Research Institute, the National Taiwan University, and the National Cheng Kung University.
Reference
Tsai Y-L, Li C-W, Hong T-M, Ho J-Z, Yang E-C, Wu W-Y, Margaritondo G, Hsu S-T, Ong EBL, Hwu Y. Firefly Light Flashing: Oxygen Supply Mechanism. Physical Review Letters 17 December 2014.
####
For more information, please click here
Contacts:
Nik Papageorgiou
41-216-932-105
Copyright © Ecole Polytechnique Fédérale de Lausanne
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Controlling chemical catalysts with sculpted light January 15th, 2021
Imaging
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
High-speed atomic force microscopy visualizes cell protein factories January 8th, 2021
JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021
New imaging method views soil carbon at near-atomic scales December 25th, 2020
Building Useful Gadgets: Biophysicist Paul Hansma joins the National Academy of Inventors December 9th, 2020
Display technology/LEDs/SS Lighting/OLEDs
An LED that can be integrated directly into computer chips: The advance could cut production costs and reduce the size of microelectronics for sensing and communication December 14th, 2020
Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020
Nanomedicine
Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021
Single-dose COVID-19 vaccine triggers antibody response in mice January 8th, 2021
Nanocrystals that eradicate bacteria biofilm January 8th, 2021
Detecting COVID-19 antibodies in 10-12 seconds January 8th, 2021
Discoveries
Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021
Announcements
Controlling chemical catalysts with sculpted light January 15th, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Controlling chemical catalysts with sculpted light January 15th, 2021
Tools
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
High-speed atomic force microscopy visualizes cell protein factories January 8th, 2021
JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021
New imaging method views soil carbon at near-atomic scales December 25th, 2020
Water
Controlling the nanoscale structure of membranes is key for clean water, researchers find January 1st, 2021
Industrial-strength brine, meet your kryptonite: Boron nitride coating is key ingredient in hypersaline desalination technology November 6th, 2020
Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020
Research partnerships
Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021
Nanocrystals that eradicate bacteria biofilm January 8th, 2021
Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma December 30th, 2020
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |