Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > $18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications

The EFRI 2-DARE project led by Alexander Balandin at the University of California, Riverside, will focus on a new class of ultra-thin film materials, termed van der Waals materials, and the synthesis of new structures with them.

Credit: Mahesh Neupane, Roger Lake, and Alexander Balandin
The EFRI 2-DARE project led by Alexander Balandin at the University of California, Riverside, will focus on a new class of ultra-thin film materials, termed van der Waals materials, and the synthesis of new structures with them.

Credit: Mahesh Neupane, Roger Lake, and Alexander Balandin

Abstract:
Graphene, a form of carbon in which a single layer of atoms forms a two-dimensional, honeycomb crystal lattice, conducts electricity and heat efficiently and interacts with light in unusual ways. These properties have led to worldwide efforts in exploring its use in electronics, photonics and many other applications.

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications

Arlington, VA | Posted on October 1st, 2014

Rapid advances in graphene research during the last decade have suggested tantalizing possibilities for other two-dimensional materials, each of which might have distinct and useful properties.

To investigate the promise of 2-D layered materials beyond graphene, the National Science Foundation's (NSF) Office of Emerging Frontiers in Research and Innovation (EFRI) recently awarded grants totaling close to $18 million. NSF collaborated closely with the Air Force Office of Scientific Research (AFOSR), which is planning to invest an additional $10 million through its Basic Research Initiative.

Over the next four years, nine teams involving a total of 42 researchers at 18 institutions will pursue transformative research in the area of 2-D atomic-layer research and engineering (2-DARE).

EFRI 2-DARE researchers will explore fundamental materials properties, synthesis and characterization, predictive modeling techniques and scalable fabrication and manufacturing methods to create new devices for photonics, electronics, sensors and energy harvesting. They also will investigate forming such devices on flexible, transparent and conformal substrates.

The EFRI 2-DARE researchers will seek out 2-D layered materials and systems that offer enhanced and new capabilities in thermal storage, thermoelectric performance, gas adsorption and other areas. The rich variety of properties these materials and systems offer potentially can be engineered on demand.

"These nine projects offer opportunities for fundamental scientific exploration by unveiling the unique properties of these exciting 2-D monolayer membranes, and for harnessing these properties to spur device research that can enable technological breakthroughs," said Anupama Kaul, who coordinated EFRI 2-DARE during her rotation as an NSF program officer. "The teams will also contribute to the advancement of scalable synthesis routes and the nanomanufacturing of these materials, which can help seed translational research opportunities for these materials in the future."

The 2-DARE projects for EFRI are listed below.

Alexander Balandin of the University of California, Riverside (UCR), will lead the project "Novel Switching Phenomena in Atomic Heterostructures for Multifunctional Applications" (1433395) in collaboration with Alexander Khitun of UCR, Roger Lake of UCR, and Tina Salguero of the University of Georgia.

David Cobden of the University of Washington will lead the project "Spin-Valley Coupling for Photonic and Spintronic Devices" (1433496) in collaboration with Arka Majumdar of the University of Washington, David Mandrus of the University of Tennessee, Di Xiao of Carnegie Mellon University, and Xiaodong Xu of the University of Washington.

Joshua Goldberger of The Ohio State University will lead the project "Enhancing Thermal and Electronic Properties in Epitopotaxial Ge/Sn Graphane Heterostructures" (1433467) in collaboration with David Broido of Boston College, Dave Cahill of the University of Illinois, Urbana-Champaign, Joseph Heremans of The Ohio State University, and Li Shi of the University of Texas, Austin.

Yu Huang of the University of California, Los Angeles (UCLA), will lead the project "Scalable Synthesis of 2-D Layered Materials for Large Area Flexible Thin Film Electronics" (1433541) in collaboration with Xiangfeng Duan of UCLA, Kang L Wang of UCLA, and James De Yoreo of the University of Washington.

Lincoln Lauhon of Northwestern University will lead the project "Scalable Growth and Fabrication of Anti-Ambipolar Heterojunction Devices" (1433510) in collaboration with Mark Hersam of Northwestern University, Mark Lundstom of Purdue University, and Tobin Marks of Northwestern University.

Joan Redwing of The Pennsylvania State University will lead the project "2-D Crystals formed by Activated Atomic Layer Deposition" (1433378) in collaboration with Penn State colleagues Nasim Alem, Thomas Jackson, Ying Liu and Suzanne Mohney.

Joshua Robinson of The Pennsylvania State University will lead the project "Ultra-Low Power, Collective-State Device Technology Based on Electron Correlation in Two-Dimensional Atomic Layers" (1433307) in collaboration with Eva Andrei of Rutgers University, Suman Datta of Penn State, Roman Engel-Herbert of Penn State, and James Freericks of Georgetown University.

Humberto Terrones of Rensselaer Polytechnic Institute will lead the project "Design, Synthesis, Characterization and Device Fabrication of Transition Metal Dichalcogenides for Active and Nonlinear Photonics" (1433311) in collaboration with Ana Laura Elias of Penn State University, Zhiwen Liu of Penn State University, Yong Xu of Virginia Tech, and Lan Yang of Washington University in St. Louis.

Huili Grace Xing of the University of Notre Dame will lead the project "Monolayer Heterostructures: Epitaxy to Beyond-CMOS Devices" (1433490) in collaboration with Notre Dame colleagues Morten Eskildsen, Libai Huang, Debdeep Jena, and Tengfei Luo.

"If we want to be competitive in the innovation economy and to benefit society with exciting new technologies," said Sohi Rastegar, director of the EFRI program, "cutting edge fundamental science and engineering research like 2-DARE is indispensible."

The fiscal year 2014 EFRI 2-DARE topic was developed with significant input from the research community and in close collaboration between the NSF Directorate for Engineering and the NSF Directorate for Mathematical and Physical Sciences as well as with the AFOSR.

The funding opportunity for 2-DARE is planned to be available again in FY 2015.

EFRI, established by the NSF Directorate for Engineering in 2007, seeks high-risk, interdisciplinary research that has the potential to transform engineering and other fields. The grants demonstrate the EFRI goal to inspire and enable researchers to expand the limits of knowledge in service of grand engineering challenges and national needs.

####

About National Science Foundation (NSF)
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Sarah Bates
NSF
(703) 292-7738


Program Contacts
Sohi Rastegar
NSF EFRI
(703) 292-5379

Copyright © National Science Foundation (NSF)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Military

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Photonics/Optics/Lasers

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project