Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles

This graphic shows the difference between an armchair nanotube, left, with a fast-growing near-armchair nanotube, center, which has a single kink at its base. At right, a nanotube with multiple kinks is not as likely to grow under given conditions, according to a new formula for nanotube growth by theoretical physicists at Rice University.Credit:  Evgeni Penev/Rice University
This graphic shows the difference between an armchair nanotube, left, with a fast-growing near-armchair nanotube, center, which has a single kink at its base. At right, a nanotube with multiple kinks is not as likely to grow under given conditions, according to a new formula for nanotube growth by theoretical physicists at Rice University.

Credit: Evgeni Penev/Rice University

Abstract:
Many a great idea springs from talks over a cup of coffee. But it's rare and wonderful when a revelation comes from the cup itself.

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles

Houston, TX | Posted on September 17th, 2014

Rice University theoretical physicist Boris Yakobson, acting upon sudden inspiration at a meeting last year in Arlington, Va., obtained a couple of spare coffee cups from a server and a pair of scissors and proceeded to lay out - science fair-style - an idea that could have far-reaching implications for the nanotechnology industry.

As reflected in a new paper in Nature Communications, Yakobson and his Rice colleagues, postdoctoral researcher Vasilii Artyukhov and research scientist Evgeni Penev, had come up with the seed (or perhaps, bean) of a simple formula that describes why nanotubes have chirality. Chirality is the property that describes the angle of the carbon atom hexagons that make up a nanotube's walls.

The researchers said the knowledge may ultimately allow chemists to control the chirality of entire batches of nanotubes as the tubes are grown.

Carbon nanotubes are sheets of graphene, the single-atom thick form of carbon, rolled into a cylinder. Certain types, called armchair nanotubes -- so-called for the way their edges line up -- have excellent conductivity and may be the key to lossless power transmission cables. Turn the hexagons 30 degrees and the nanotubes become what are called zigzag type, a semiconducting variant that has great value for electronic applications.

Zigzags, armchairs and all the nanotubes in between are defined by their chirality. Their electronic, chemical and optical properties change with every degree between zero and 30 that the hexagons are tilted.

Nanotubes grow in batches of many types, and nobody has yet found an efficient way to obtain tubes of a single type in industrial quantities. The best hope for new technologies using nanotubes is to figure out how to grow single-chirality batches.

That, it turns out, may be a matter of balancing two opposing forces: the energy of the catalyst-nanotube contact and the speed at which atoms attach themselves as they force the nanotube to grow from the bottom up.

Yakobson and his colleagues were most intrigued by the fact that, over the last decade, nanotube growth in several laboratories has revealed a strong preference toward near-armchair versions with minimum chirality. As grown, these nanotubes tilt at the base while still attached to the metal catalyst. "They're leaning towers of carbon," Yakobson said, although that would have made Pisa jealous because nanotubes can be thousands of times higher than they are wide. Plus, they spin as they grow instead of standing still.

"From a theory standpoint, it was really a puzzle," Penev said. "Why do they grow chiral, and what can control this type of chirality?"

Yakobson and his Rice group specialize in theoretical analysis of energy at the atomic level. When the professor, with cup and scissors in hand, cut a notch into the container, it all began to make sense.

"When we looked very carefully at the thermodynamics and kinetics of the atomic interface between the catalyst and the body of the growing carbon lattice, we discovered there is a balance between the energy of the contact and the speed by which carbon atoms can be inserted," he said.

The researchers described energy and speed as "antagonistic trends," as the energetic preference leans toward a flat-bottom nanotube that hugs the catalyst and results in either armchair or zigzag "achiral" tubes, while the need for speed leads to chiral tubes.

The best balance was achieved when the nanotubes showed a single kink at the base, like one tooth on a saw, and left the needed amount of room for atoms to attach themselves and force the tube to spiral upwards.

"The critical detail is that carbon is easier to insert at the interface between the catalyst and nanotube body if there is a loose spot," Artyukhov said. "This loose spot is always due to the kink in the foundation, so to speak."

Consequently, while calculating the growth distribution of nanotubes in a batch, the researchers found the most abundant nanotubes are those that are very close to armchair type, especially when growth takes place at lower temperatures and with a solid catalyst. Higher temperatures and a liquid catalyst tend to produce a wider array of chiral nanotubes. Both results can be explained by the formula, according to the paper.

"In fact, one of the most satisfying things about this work is that all this complexity can be packed into a very simple mathematical equation," Yakobson said. "I would never have expected that."

The Office of Naval Research, the Air Force Office of Scientific Research and the National Science Foundation (NSF) supported the research. The researchers used the NSF-supported Data Analysis and Visualization Cyberinfrastructure supercomputer administered by Rice's Ken Kennedy Institute for Information Technology, as well as NSF's XSEDE and the Department of Energy's National Energy Research Scientific Computing Center supercomputers.

Yakobson is Rice's Karl F. Hasselmann Professor of Materials Science and NanoEngineering, a professor of chemistry and a member of Rice's Richard E. Smalley Institute for Nanoscale Science and Technology.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is highly ranked for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Yakobson Research Group:

Rice University Materials Science and NanoEngineering:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Military

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project