Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New analytical technology reveals 'nanomechanical' surface traits

A new research platform uses a laser to measure the "nanomechanical" properties of tiny structures undergoing stress and heating, an approach likely to yield insights to improve designs for microelectronics and batteries. Clockwise from upper left, graphics of the instrument setup, and at bottom right a scanning electron microscope image of the tiny silicon cantilever used in the research. Ming Gan/Purdue University photo
A new research platform uses a laser to measure the "nanomechanical" properties of tiny structures undergoing stress and heating, an approach likely to yield insights to improve designs for microelectronics and batteries. Clockwise from upper left, graphics of the instrument setup, and at bottom right a scanning electron microscope image of the tiny silicon cantilever used in the research.

Ming Gan/Purdue University photo

Abstract:
Surface stress variation as a function of applied compressive stress and temperature in microscale silicon

Ming Gan and Vikas Tomara

School of Aeronautics and Astronautics, Purdue University

Surface stress has been shown to affect the mechanical properties of materials at or below the microscale. Surface-stress-induced dislocation activity at such length scales has been shown to be a major factor affecting the mechanical behavior of materials. Defect generation as a function of applied stress at the microscale has previously been measured experimentally and predicted using simulations. However, the change in surface stress in a material in response to externally applied stress as a function of temperature has not been explored experimentally. Such an investigation is presented in this work for the case of microscale silicon samples. In-situ nondestructive measurements of the applied compressive stress and the corresponding microscale surface stress were performed from room temperature to 100 C. The applied stress was controlled by a nanomechanical loading system. Micro-Raman spectroscopy was used to measure the surface stress in-situ as the samples deformed under the applied uniaxial compressive stress. The surface stress was found to be lower than the applied stress at all temperatures. The difference between the surface stress and the applied stress became higher at higher temperatures indicating that surface relaxation was induced by the temperature increase. Based on the measured values and observed trends, an exponential Gaussian function is proposed to describe the stress as a function of surface depth. VC 2014 AIP Publishing LLC. [dx.doi.org/10.1063/1.4892623]

New analytical technology reveals 'nanomechanical' surface traits

West Lafayette, IN | Posted on August 29th, 2014

A new research platform uses a laser to measure the "nanomechanical" properties of tiny structures undergoing stress and heating, an approach likely to yield insights to improve designs for microelectronics and batteries.

This new technique, called nanomechanical Raman spectroscopy, reveals information about how heating and the surface stress of microscale structures affect their mechanical properties. Researchers have discussed the merits of surface-stress influence on mechanical properties for decades. However, the nanomechanical Raman spectroscopy has offered the first such measurement, said Vikas Tomar, an associate professor in Purdue's School of Aeronautics and Astronautics.

Surface stress is similar to the surface tension that allows small insects to walk on water, makes water drops spherical, and causes human skin to initially resist a needle's penetration. On the relatively large scale of ordinary, everyday machines, surface stress is negligible, but it becomes critical for micro- and nanostructures, he said.

Recent findings are potentially important because silicon structures measured on the scale of micrometers and nanometers form essential components of semiconductor processors, sensors and an emerging class of miniscule machines called microelectromechanical systems.

"The functioning of such devices has been found to be highly affected by their operating temperature," Tomar said. "Such densely packaged devices generate considerable heat during operation. However, until now we have not been able to measure how heating and surface stress contribute to mechanical properties."

Information about the platform and new research findings were detailed in three papers published this year. The most recent appeared Aug. 15 in the Journal of Applied Physics. Tomar has led the research with former doctoral student Ming Gan, who has graduated and is now working in industry, and current doctoral student Yang Zhang.

In Raman spectroscopy, a laser interacts with the vibrating crystal lattice of materials, providing information about the chemical makeup of the materials.

"But we have not been able to incorporate in-situ stress or deformation into those chemical signatures," Tomar said. "Now we have combined nanomechanical measurements into Raman spectroscopy."

The researchers used the technique to study microscale silicon cantilevers, tiny diving-board shaped slivers about 7 microns thick, or roughly one-tenth the thickness of a human hair, and 225 microns long. The cantilevers were heated and stressed simultaneously. Surface stresses at the micro- and nanoscales were measured for the first time in conjunction with temperature change and a structure's deformation.

Findings show that heating a cantilever from 25 to 100 degrees Celsius while applying stress to the structure causes a dramatic increase in strain rate, or deformation.

The heating reduces bonding forces between atoms on the surface of the structures. The lower bonding force results in a "relaxed" state of the surface or near-surface atoms that progresses as the temperature increases, leading to cracks and device failure.

"The key is to be able to measure thermal and mechanical properties simultaneously because they are interrelated, and surface stress influences mechanical properties," Tomar said.

Findings are potentially important for the measurement of components in batteries to study stresses as they constantly expand and contract during charge-discharge cycles. Ordinary sensors are unable to withstand punishing conditions inside batteries.

However, because Raman spectroscopy uses a laser to conduct measurements, it does not have to be attached to the batteries, making possible a new type of sensor removed from the harsh conditions inside batteries.

"If you don't need onboard sensors you can go into extreme environments," he said. "You can learn how the stresses are evolving so that we can design better batteries."

Such a technology also could be important for development of super-strong composite materials that mimic those found in some marine animals that are able to survive in the extreme conditions found in ocean-floor hydrothermal vents. One obstacle is overcoming stresses that occur at the interfaces of different layers within the composite materials.

"These materials always break at the interfaces," Tomar said. "Now we can understand as the material is deforming how the interface stresses are developing, and this will allow us to predict how to modify them."

Purdue has filed a provisional patent for the new platform. The research has been funded by the National Science Foundation.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Sources:
Vikas Tomar
765-494-3423

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Imaging

New Grand ARM Transmission Electron Microscope Offers Highest Commercially-Available Atomic Resolution of 63 Picometers October 17th, 2014

Nanotronics Imaging Releases nSPEC® 3D, Powerful Microscope That Captures 3D Images at Nanoscale, in Lightning Speed: Company Unveils Design at American Chemical Society 2014 International Elastomer Conference October 14th, 2014

BSA Distinguished Lecture Today, 10/14: 'LCLS: A Stunning New View Through X-ray Laser Eyes' October 14th, 2014

The Körber Foundation congratulates Stefan Hell on winning the 2014 Nobel Prize October 10th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Chip Technology

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

3DXNano™ ESD Carbon Nanotube 3D Printing Filament - optimized for demanding 3D printing applications in the semi-con and electronics industry October 16th, 2014

Announcements

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Tools

New Grand ARM Transmission Electron Microscope Offers Highest Commercially-Available Atomic Resolution of 63 Picometers October 17th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Nanotronics Imaging Releases nSPEC® 3D, Powerful Microscope That Captures 3D Images at Nanoscale, in Lightning Speed: Company Unveils Design at American Chemical Society 2014 International Elastomer Conference October 14th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Patents/IP/Tech Transfer/Licensing

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Aculon Receives Patent for Application of Enhanced Bonding Layers on Titanium October 9th, 2014

harmaEngine will join Nanobiotix’ pivotal trial for NBTXR3 in Soft Tissue Sarcoma to accelerate its development in Asia-Pacific: PharmaEngine to make milestone payment to Nanobiotix in October 2014 to recognize the value created October 8th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Graphenea opens US branch October 16th, 2014

NTU develops ultra-fast charging batteries that last 20 years October 14th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

Crumpled graphene could provide an unconventional energy storage: Two-dimensional carbon “paper” can form stretchable supercapacitors to power flexible electronic devices October 4th, 2014

Photonics/Optics/Lasers

Physicists build reversible laser tractor beam October 20th, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

New VDMA Association "Electronics, Micro and Nano Technologies" founded: Inaugural Meeting in Frankfurt/Main, Germany October 15th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE