Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > RMIT delivers $30m boost to micro and nano-tech

RMIT University's $AUD30 million MicroNano Research Facility.
RMIT University's $AUD30 million MicroNano Research Facility.

Abstract:
A new $AUD30 million research facility at RMIT University in Melbourne, Australia, will drive cutting-edge advances in micro- and nano-technologies.

RMIT delivers $30m boost to micro and nano-tech

Melbourne, Australia | Posted on August 26th, 2014

The MicroNano Research Facility (MNRF) will bring to Australia the world's first rapid 3D nanoscale printer and will support projects that span across the traditional disciplines of physics, chemistry, engineering, biology and medicine.

The City campus facility will be launched by Vice-Chancellor and President, Professor Margaret Gardner AO, on Wednesday, 27 August.

Professor Gardner said the opening of the state-of-the-art laboratories and clean rooms was the start of an exciting new chapter in cross-disciplinary nano research.

"At the heart of the MicroNano Research Facility's mission is bringing together disparate disciplines to enable internationally-leading research activity," she said.

"RMIT has long been a pioneer in this field, opening Australia's first academic clean rooms at the Microelectronics and Materials Technology Centre in 1983.

"Over three decades later, this investment in the world-class MNRF will enable RMIT's leading researchers to continue to break new ground and transform the future."

Among the equipment available to researchers in the 1200 square metre facility will be the world's first rapid 3D nanoscale printer, capable of producing thousands of structures - each a fraction of the width of a human hair - in seconds.

Designed by architects SKM Jacobs, the MNRF also offers researchers access to more than 50 cutting-edge tools, including focused ion beam lithography with helium, neon, and gallium ion beams to enable imaging and machining objects to 0.5 nm resolution - about 5 to 10 atoms.

Director of the MNRF, Professor James Friend, said 10 research teams would work at the new facility on a broad range of projects, including:

building miniaturised motors - or microactuators - to retrieve blood clots from deep within the brain, enabling minimally invasive neurological intervention in people affected by strokes or aneurysms;
improving drug delivery via the lungs through new techniques that can atomise large biomolecules - including drugs, DNA, antibodies and even cells - into tiny droplets to avoid the damage of conventional nebulisation;
developing innovative energy harvesting techniques that change the way batteries are recharged, using novel materials that can draw on the energy generated simply by people walking around; and,
inventing ways to use water to remove toxins from fabric dyes, with new nanotechnologies that can facilitate the breaking down of those dyes with nanostructured catalysts.

"This facility is all about ensuring researchers have the freedom to imagine and safely realise the impossible at tiny scales and beyond," Professor Friend said.

"Having access to purpose-designed laboratories and leading-edge equipment opens tremendous opportunities for RMIT and for those we collaborate with, enabling us to advance the development of truly smart technology solutions to some of our most complex problems."

Laboratories in the MNRF will include:

Gas sensors laboratory
Metrology laboratory
Novel Fabrication laboratory
PC2 mammalian cell laboratory
Photolithography laboratory
Physical vapour deposition laboratory
Polydimethylsiloxane (PDMS) and nanoparticle laboratory
Wet etch laboratory
Support laboratory

The MNRF will be a key enabler of RMIT's flagship Health Innovations Research Institute and Platform Technologies Research Institute.

A unique teaching facility will also be affiliated with the MNRF.

The Micro Nano Teaching Facility (MNTF) is the first of its kind in Australia, enabling undergraduate and postgraduate engineering student trainees to study clean room operations and micro-fabrication.

####

About RMIT University
MIT University is a global university of technology and design, focused on creating solutions that transform the future for the benefit of people and their environments.

One of Australia’s original educational institutions founded in 1887, RMIT is now the nation’s largest and most internationalised tertiary institution with more than 82,000 students.

The University enjoys an international reputation for excellence in professional and practical education, applied research, and engagement with the needs of industry and the cities in which it is located.

RMIT has three campuses in Melbourne, two campuses in Vietnam and an office in Barcelona, Spain. The University also offers programs through partners in Singapore, Hong Kong, mainland China, Indonesia, Sri Lanka, Spain and Germany, and enjoys research and industry partnerships on every continent.

RMIT is ranked in the top 15 among all Australian universities (2013 QS World University Rankings) and has a 5-Star QS ranking for excellence in higher education.

In 2013, RMIT was named International Education Provider of the Year in the inaugural Victorian International Education Awards.

For more information, please click here

Contacts:
Gosia Kaszubska
+61 3 9925 3176
+61 417 510 735

David Glanz

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Videos/Movies

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Laboratories

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Openings/New facilities/Groundbreaking/Expansion

New Agricultural Research Center Debuts at UCF October 12th, 2016

Nexeon Establishes Base in Asia October 11th, 2016

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Albertan Science Lab Opens in India May 7th, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Chip Technology

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Sensors

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Announcements

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Tools

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

Nanocubes simplify printing and imaging in color and infrared: New technology allows multispectral reactions on a single chip December 15th, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project