Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues

Tribol Lett 55(2014)
Tribol Lett 55(2014)

Abstract:
A research group led by Dr. Masahiro Goto, a MANA Scientist at the Nano-Electronic Materials Unit, International Center for Materials Nanoarchitectonics, NIMS, and Dr. Michiko Sasaki, a NIMS Postdoctoral Researcher, and Dr. Masahiro Tosa, a Group Leader at the High Temperature Materials Unit, NIMS, created an unprecedented highly efficient method for developing friction materials with a desired frictional property. The result of this research has been published in Tribology Letters, Vol.55 (2014) 289-293. DOI: 10.1007/s11249-014-0349-5.

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues

Tsukuba, Japan | Posted on August 26th, 2014

A research group led by Dr. Masahiro Goto, a MANA Scientist at the Nano-Electronic Materials Unit (Unit Director: Toyohiro Chikyow),International Center for Materials Nanoarchitectonics, NationalInstitute for Materials Science (NIMS; President: Sukekatsu Ushioda), and Dr. Michiko Sasaki, a NIMS Postdoctoral Researcher, and Dr. Masahiro Tosa, a Group Leader at the High Temperature Materials Unit (Unit Director: Seiji Kuroda), NIMS, created an unprecedented highly efficient method for developing friction materials with a desired frictional property. The method is able to drastically accelerate the development of materials that have a friction coefficient suited to the purpose of use, such as low-friction materials for reducing energy loss and high-friction materials required for high-performance brakes.

Technology for freely controlling the friction coefficient of a material is a vital factor in the development of new materials. For instance, amid the worsening of the global environment and energy issues, reduction of frictions in generators and motors directly leads to energy conservation. Under such circumstances, technology to control friction force by coating an existing structural material is drawing attention. However, since the frictional property of a coating changes considerably due to differences in the crystal preferred orientation, an enormous number of experiments with variedcompositions and crystalline structures and orientations are required in order to obtain a material with a desired frictional property, which has lengthened the development process. This time, the research group applied combinatorial technology to the development of friction materials conducted through control of crystal preferred orientation for the first time, and created a completely new technique that enables highly efficient materials development that only requires one trial experiment, eliminating the need to conduct experiments many times.

For example, zinc oxide (ZnO), which is a general metal oxide, exhibits a low-friction phenomenon when its crystal preferred orientation is optimized. However, to find the optimum crystal preferred orientation and structure for achieving such low-frictional property, it was conventionally necessary to create a large number of samples with varied crystal preferred orientations by changing the coating conditions and evaluate their crystal preferred orientation and frictional property, which required a long R&D period.

In this research, the group led by Dr. Goto analyzed the crystal structure of each microscopic region of the slide mark remaining after sliding a material while changing the conditions of the coating film (load, type of indenter material, number of sliding cycles, etc.), and discovered that it is possible to change the crystal preferred orientation by changing such conditions. In addition, the group made it possible to clarify the correlation between the friction coefficient and the crystal preferred orientation through only one experiment by also measuring the friction coefficient of the location corresponding to the crystal preferred orientation. This technique also enables control of the crystal preferred orientation of a material by a friction process alone by changing the sliding conditions, which is an achievement that significantly expands the potential of friction materials development.

The combinatorial tribological technique proposed by the group, which is able to acquire information on the crystal structure and the crystal preferred orientation required for achieving the desired friction coefficient in a short time, and can change the crystal preferred orientation of the surface layer of a material to a specific orientation by mere friction, is expected to become a leading technique in future friction materials research.

Full bibliographic information

Masahiro Goto, Michiko Sasaki, Akira Kasahara and Masahiro Tosa, Frictional Property Depended on Crystal Preferred Orientation Analyzed by a Combinatorial Technique, Tribology Letters, Vol.55 (2014) 289-293, DOI: 10.1007/s11249-014-0349-5.

The results of this research has been published in Tribology Letters, Vol.55 (2014) 289-293. The research was carried out under the Grant-in-Aid for Scientific Research (A) (21246030) and as part of a project of the Green Tribology Innovation Network in the area of Advanced Environmental Materials of the Green Network of Excellence (GRENE) program sponsored by the Ministry of Education, Culture, Sports, Science and Technology.

####

About National Institute for Materials Science (NIMS)
Only one Public Institution for Materials Science in Japan

For more information, please click here

Contacts:
Masahiro Goto
MANA Scientist, Semiconductor Device Materials Group, Nano-Electronic
Materials Unit, Nano-Materials Field, MANA
TEL:+81-29-859-2746
FAX:+81-29-859-2025
GOTO.Masahiro=nims.go.jp
(Please change "=" to

Michiko Sasaki
NIMS PostDoc Researcher
Innovative Tribomaterials Group, High Temperature Materials Unit, NIMS
TEL:+81-29-851-3354(ext.6533)
SASAKI.Michiko=nims.go.jp
(Please change "=" to

For general inquiry
NIMS Public Relations Office
TEL:+81-29-859-2026
FAX:+81-29-859-2017
pressrelease=ml.nims.go.jp
(Please change "=" to

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Physics

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Discoveries

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Materials/Metamaterials

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction May 5th, 2017

Announcements

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Automotive/Transportation

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

Aerospace/Space

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project