Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues

Tribol Lett 55(2014)
Tribol Lett 55(2014)

Abstract:
A research group led by Dr. Masahiro Goto, a MANA Scientist at the Nano-Electronic Materials Unit, International Center for Materials Nanoarchitectonics, NIMS, and Dr. Michiko Sasaki, a NIMS Postdoctoral Researcher, and Dr. Masahiro Tosa, a Group Leader at the High Temperature Materials Unit, NIMS, created an unprecedented highly efficient method for developing friction materials with a desired frictional property. The result of this research has been published in Tribology Letters, Vol.55 (2014) 289-293. DOI: 10.1007/s11249-014-0349-5.

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues

Tsukuba, Japan | Posted on August 26th, 2014

A research group led by Dr. Masahiro Goto, a MANA Scientist at the Nano-Electronic Materials Unit (Unit Director: Toyohiro Chikyow),International Center for Materials Nanoarchitectonics, NationalInstitute for Materials Science (NIMS; President: Sukekatsu Ushioda), and Dr. Michiko Sasaki, a NIMS Postdoctoral Researcher, and Dr. Masahiro Tosa, a Group Leader at the High Temperature Materials Unit (Unit Director: Seiji Kuroda), NIMS, created an unprecedented highly efficient method for developing friction materials with a desired frictional property. The method is able to drastically accelerate the development of materials that have a friction coefficient suited to the purpose of use, such as low-friction materials for reducing energy loss and high-friction materials required for high-performance brakes.

Technology for freely controlling the friction coefficient of a material is a vital factor in the development of new materials. For instance, amid the worsening of the global environment and energy issues, reduction of frictions in generators and motors directly leads to energy conservation. Under such circumstances, technology to control friction force by coating an existing structural material is drawing attention. However, since the frictional property of a coating changes considerably due to differences in the crystal preferred orientation, an enormous number of experiments with variedcompositions and crystalline structures and orientations are required in order to obtain a material with a desired frictional property, which has lengthened the development process. This time, the research group applied combinatorial technology to the development of friction materials conducted through control of crystal preferred orientation for the first time, and created a completely new technique that enables highly efficient materials development that only requires one trial experiment, eliminating the need to conduct experiments many times.

For example, zinc oxide (ZnO), which is a general metal oxide, exhibits a low-friction phenomenon when its crystal preferred orientation is optimized. However, to find the optimum crystal preferred orientation and structure for achieving such low-frictional property, it was conventionally necessary to create a large number of samples with varied crystal preferred orientations by changing the coating conditions and evaluate their crystal preferred orientation and frictional property, which required a long R&D period.

In this research, the group led by Dr. Goto analyzed the crystal structure of each microscopic region of the slide mark remaining after sliding a material while changing the conditions of the coating film (load, type of indenter material, number of sliding cycles, etc.), and discovered that it is possible to change the crystal preferred orientation by changing such conditions. In addition, the group made it possible to clarify the correlation between the friction coefficient and the crystal preferred orientation through only one experiment by also measuring the friction coefficient of the location corresponding to the crystal preferred orientation. This technique also enables control of the crystal preferred orientation of a material by a friction process alone by changing the sliding conditions, which is an achievement that significantly expands the potential of friction materials development.

The combinatorial tribological technique proposed by the group, which is able to acquire information on the crystal structure and the crystal preferred orientation required for achieving the desired friction coefficient in a short time, and can change the crystal preferred orientation of the surface layer of a material to a specific orientation by mere friction, is expected to become a leading technique in future friction materials research.

Full bibliographic information

Masahiro Goto, Michiko Sasaki, Akira Kasahara and Masahiro Tosa, Frictional Property Depended on Crystal Preferred Orientation Analyzed by a Combinatorial Technique, Tribology Letters, Vol.55 (2014) 289-293, DOI: 10.1007/s11249-014-0349-5.

The results of this research has been published in Tribology Letters, Vol.55 (2014) 289-293. The research was carried out under the Grant-in-Aid for Scientific Research (A) (21246030) and as part of a project of the Green Tribology Innovation Network in the area of Advanced Environmental Materials of the Green Network of Excellence (GRENE) program sponsored by the Ministry of Education, Culture, Sports, Science and Technology.

####

About National Institute for Materials Science (NIMS)
Only one Public Institution for Materials Science in Japan

For more information, please click here

Contacts:
Masahiro Goto
MANA Scientist, Semiconductor Device Materials Group, Nano-Electronic
Materials Unit, Nano-Materials Field, MANA
TEL:+81-29-859-2746
FAX:+81-29-859-2025
GOTO.Masahiro=nims.go.jp
(Please change "=" to

Michiko Sasaki
NIMS PostDoc Researcher
Innovative Tribomaterials Group, High Temperature Materials Unit, NIMS
TEL:+81-29-851-3354(ext.6533)
SASAKI.Michiko=nims.go.jp
(Please change "=" to

For general inquiry
NIMS Public Relations Office
TEL:+81-29-859-2026
FAX:+81-29-859-2017
pressrelease=ml.nims.go.jp
(Please change "=" to

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Physics

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Research reveals novel quantum state in strange insulating materials February 14th, 2017

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

Discoveries

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Materials/Metamaterials

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Metamaterial: Mail armor inspires physicists: KIT researchers reverse hall coefficient -- medieval mail armor inspired development of metamaterial with novel properties February 15th, 2017

Announcements

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Automotive/Transportation

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

Metallic hydrogen, once theory, becomes reality: Harvard physicists succeed in creating 'the holy grail of high-pressure physics' January 28th, 2017

Nanoscale view of energy storage January 16th, 2017

Illinois team advances GaN-on-Silicon for scalable high electron mobility transistors January 10th, 2017

Aerospace/Space

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

New method improves accuracy of imaging systems February 8th, 2017

National Space Society's Space Settlement Summit Draws Industry Leaders February 4th, 2017

Use stars’ own light to park tiny spacecraft at an exoplanet February 1st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project