Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Immune cells get cancer-fighting boost from nanomaterials

Abstract:
Scientists at Yale University have developed a novel cancer immunotherapy that rapidly grows and enhances a patient's immune cells outside the body using carbon nanotube-polymer composites; the immune cells can then be injected back into a patient's blood to boost the immune response or fight cancer.

Immune cells get cancer-fighting boost from nanomaterials

New Haven, CT | Posted on August 13th, 2014

As reported Aug. 3 in Nature Nanotechnology, the researchers used bundled carbon nanotubes (CNTs) to incubate cytotoxic T cells, a type of white blood cell that is important to immune system functions. According to the researchers, the topography of the CNTs enhances interactions between cells and long-term cultures, providing a fast and effective stimulation of the cytotoxic T cells that are important for eradicating cancer.

The researchers modified the CNTs by chemically binding them to polymer nanoparticles that held Interleukin-2, a cell signaling protein that encourages T cell growth and proliferation. Additionally, in order to mimic the body's methods for stimulating cytotoxic T cell proliferation, the scientists seeded the surfaces of the CNTs with molecules that signaled which of the patient's cells were foreign or toxic and should be attacked.

Over the span of 14 days, the number of T cells cultured on the composite nanosystem expanded by a factor of 200, according to the researchers. Also, the method required 1,000 times less Interleukin-2 than conventional culture conditions. A magnet was used to separate the CNT-polymer composites from the T cells prior to injection.

"In repressing the body's immune response, tumors are like a castle with a moat around it," says Tarek Fahmy, an associate professor of biomedical engineering and the study's principal investigator. "Our method recruits significantly more cells to the battle and arms them to become superkillers."

According to Fahmy, previous procedures for boosting antigen-specific T cells required exposing the patient's harvested immune cells to other cells that stimulate activation and proliferation, a costly procedure that risks an adverse reaction to foreign cells. The Yale team's use of magnetic CNT-polymer composites eliminates that risk by using simple, inexpensive magnets.

"Modulatory nanotechnologies can present unique opportunities for promising new therapies such as T cell immunotherapy," says Tarek Fadel, lead author of the research and a Yale postdoc who is currently a staff scientist with the National Nanotechnology Coordination Office. "Engineers are progressing toward the design of the next generations of nanomaterials, allowing for further breakthrough in many fields, including cancer research."

Two additional Yale engineering faculty contributed to this article: Gary Haller, the Henry Prentiss Becton Professor of Engineering and Applied Science and a professor of chemistry; and Lisa Pfefferle, the C. Baldwin Sawyer Professor of Chemical and Environmental Engineering. Other authors include Fiona Sharp, Nalini Vudattu, Ragy Ragheb, Justin Garyu, Dongin Kim, Enping Hong, Nan Li, Sune Justesen, and Kevan Herold.

####

For more information, please click here

Contacts:
Jim Shelton
(203) 432-3881

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

Nanomedicine

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Stealth nanocapsules kill Chagas parasites in mouse models June 22nd, 2016

Discoveries

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Materials/Metamaterials

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Announcements

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic