Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Self-assembly of gold nanoparticles into small clusters

Cryogenic TEM micrograph of gold nanoparticles (Au-NP) in DES-solvent. Sputtering duration 300 s. Red circles show the different domains of self-assembled Au-NPs. The inset shows an enlarged image of one particular domain of self-assembled Au-NPs.
Image: HU Berlin/HZB
Cryogenic TEM micrograph of gold nanoparticles (Au-NP) in DES-solvent. Sputtering duration 300 s. Red circles show the different domains of self-assembled Au-NPs. The inset shows an enlarged image of one particular domain of self-assembled Au-NPs.

Image: HU Berlin/HZB

Abstract:
Researchers at HZB in co-operation with Humboldt-Universität zu Berlin (HU, Berlin) have made an astonishing observation: they were investigating the formation of gold nanoparticles in a solvent and observed that the nanoparticles had not distributed themselves uniformly, but instead were self-assembled into small clusters.

Self-assembly of gold nanoparticles into small clusters

Berlin, Germany | Posted on August 4th, 2014

This was determined using Small-Angle X-ray Scattering (SAXS) at BESSY II. A thorough examination with an electron microscope (TEM) confirmed their result. "The research on this phenomenon is now proceeding because we are convinced that such nanoclusters lend themselves as catalysts, whether in fuel cells, in photocatalytic water splitting, or for other important reactions in chemical engineering", explains Dr. Armin Hoell of HZB. The results have just appeared in two peer reviewed international academic journals.

"What is special about the new process is that it is extremely simple and works with an environmentally friendly and inexpensive solvent", explains Professor Klaus Rademann from HU Berlin. The solvent actually consists of two powders that one would sooner expect to find in agriculture that in a research laboratory: a supplement in chicken feed (choline chloride, aka vitamin B), and urea. British colleagues discovered a few years ago that mixing the two powders forms a transparent liquid able to dissolve metal oxides and heavy metals, called deep eutectic solvent (DES). The researchers in Berlin then positioned above the solvent gold foil that they could bombard with ions of noble gas in order to detach individual atoms of gold. This is how nanoparticles initially formed that distributed themselves in the solvent.

Two surprising results: Nanoparticles stay small and form clusters
The longer the bombardment (sputtering) of the gold foil lasted, the larger the nanoparticles could become, the scientists reasoned. However, this was not the case: the particles ceased growing at five nanometres. Instead, an increasing number of nanoparticles formed over longer sputtering times. The second surprise: these nanoparticles did not distribute themselves uniformly in the liquid, but instead self-assembled into small groups or clusters that could consist of up to twelve nanoparticles.
These kinds of observations cannot be easily made under a microscope, of course, but require instead an indirect, statistical approach: "Using small-angle X-ray scattering at BESSY II, we were not only able to ascertain that the nanoparticles are all around five nanometres in diameter, but also measure what the separations between them are. From these measurements, we found the nanoparticles arrange themselves into clusters", explains Hoell.

Coherent picture by simulations, small angle scattering and electron microscopy
"We ran computer models in advance of how the nanoparticles could distribute themselves in the solution to better understand the measurement results, and then compared the results of the simulation with the results of the small-angle X-ray scattering", explains Dr. Vikram Singh Raghuwanshi, who works as a postdoc at HU Berlin as well as HZB. An image from the cryogenic transmission electron microscope that colleagues at HU prepared confirmed their findings. "But we could not have achieved this result using only electron microscopy, since it can only display details and sections of the specimen", Hoell emphasised. "Small-angle X-ray scattering is indispensable for measuring general trends and averages!"

Solvent is crucial
It is obvious to the researchers that the special DES-solvent plays an important role in this self-organising process: various interactions between the ions of the solvent and the particles of gold result firstly in the nanoparticles reaching only a few thousand atoms in size, and secondly that they mutually attract somewhat - but only weakly - so that the small clusters arise. "We know, however, that these kinds of small clusters of nanoparticles are especially effective as catalysts for chemical reactions we want: a many-fold increase in the reaction speed due only to particle arrangement has already been demonstrated", says Rademann.

Research on catalytic performance planned
Dr. Raghuwanshi will give a talk on these results, as well as providing a preview of the catalysis research approaches now planned, at the International conference, IUCr2014, taking place from 5-12 August 2014 in Montreal, Canada.
In the coming year, HZB will incidentally be one of the hosts of the 16th International Small-Angle Scattering Conference, SAS2015.

####

For more information, please click here

Contacts:
Armin Hoell

49-308-062-14678

Copyright © Helmholtz-Zentrum Berlin für Materialien und Energie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication

Royal Society of Chemistry:

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Imaging

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Chemistry

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Pokhara, the second largest city of Nepal, to host its first ever International Meeting on Material Sciences and Engineering August 15th, 2016

'Liquid fingerprinting' technique instantly identifies unknown liquids: Ability to instantly identify unknown liquids in the field could aid first responders, improve plant safety August 4th, 2016

Self Assembly

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

WSU researchers develop shape-changing 'smart' material: Heat, light stimulate self-assembly July 4th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Tools

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Events/Classes

Stretchy supercapacitors power wearable electronics August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Impressive List of Doctors, Scientists Coming to Vail for Scientific Summit: The Second Vail Scientific Summit Convenes the Greatest Minds in Regenerative Medicine and Science August 17th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic