Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Pressure probing potential photoelectronic manufacturing compound

Abstract:
Molybdenum disulfide is a compound often used in dry lubricants and in petroleum refining. Its semiconducting ability and similarity to the carbon-based graphene makes molybdenum disulfide of interest to scientists as a possible candidate for use in the manufacture of electronics, particularly photoelectronics.

Pressure probing potential photoelectronic manufacturing compound

Washington, DC | Posted on July 31st, 2014

New work from a team including several Carnegie scientists reveals that molybdenum disulfide becomes metallic under intense pressure. It is published in Physical Review Letters.

Molybdenum disulfide crystalizes in a layered structure, with a sheet of molybdenum atoms sandwiched between sheets of sulfur atoms. But it was theorized that changing this structure, without inducing impurities into it, could turn it into a metal. That is, a structural transition might enable electrons to flow smoothly.

The team—including Carnegie's Alexander Goncharov, Haidong Zhang, Sergey Lobanov, and Xiao-Jia Chen—found a way to induce this metallic state by putting molybdenum disulfide under pressure in diamond anvil cells.

They found that molybdenum disulfide underwent structural changes as the pressure increased, and the compound began changing into a new phase. The team was able to determine that these changes were due to lateral shifting of the layers of molybdenum and sulfur.

This process started above 197,000 times normal atmospheric pressure (20 gigapascals), under which the new phase and interlayer stacking arrangement starts to appear and exist in conjunction with the old phase. The complete takeover of the new phase occurs at around 395,000 times normal atmospheric pressure (40 gigapascals), after which the compound became metallic.

They found that all of these changes were reversible when the pressure was decreased again.

"More work is needed to determine whether application of further pressure could yield superconductivity, a rare physical state in which mater is able to maintain a flow of electrons without any resistance at all," Goncharov said.

The rest of the team is comprised of lead author Zhen-Hua Chi of the Chinese Academy of Sciences, co-author Xiao-Miao Zhao of the Center for High Pressure Science and Technology Advanced Research and South China University of Techonology, and co-authors Tomoko Kagayama and Masafumi Sakata of Osaka University.

###

This work was supported by the Natural Science Foundation of China, the Cultivation Fund of the Key Scientific and Technical Innovation Project Ministry of Education of China, SASHIPS, the NSF, EAR, and DARPA

####

About Carnegie Institution
The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

For more information, please click here

Contacts:
Alex Goncharov

202-478-8947

Copyright © Carnegie Institution

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Hardware

Supersonic waves may help electronics beat the heat May 18th, 2018

Strain improves performance of atomically thin semiconductor material May 11th, 2018

News and information

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Graphene/ Graphite

Strain improves performance of atomically thin semiconductor material May 11th, 2018

Nanoscale measurements 100x more precise, thanks to improved two-photon technique May 8th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Chip Technology

Supersonic waves may help electronics beat the heat May 18th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Strain improves performance of atomically thin semiconductor material May 11th, 2018

A designer's toolkit for constructing complex nanoparticles May 5th, 2018

Discoveries

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

Announcements

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

Military

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Photonics/Optics/Lasers

A micro-thermometer to record tiny temperature changes May 15th, 2018

Strain improves performance of atomically thin semiconductor material May 11th, 2018

A powerful laser breakthrough: Lehigh research team demonstrates terahertz semiconductor laser with record-high output power May 2nd, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project