Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon

Abstract:
A UCF spinout company is at the forefront of perfecting specialized nanotechnology designed to extend the longevity of batteries and superconductors. Batteries will be lighter, stay charged longer and need to be replaced less frequently—and that's a win for our smart phones and our environment.

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon

Orlando, FL | Posted on July 23rd, 2014

HyCarb, led by Sigrid Cottrell, recently signed an exclusive license agreement with UCF for a patented and patent-pending carbon nanotube material, developed by UCF nanotechnology researcher Lei Zhai and his team.

"Energy storage in the form of batteries and super-capacitors is the initial application of the licensed technology," explains Cottrel. "The next applications involve creating leading-edge sensors, catalysts, filters and transistors."

HyCarb is in the process of applying for Small Business Innovation Research (SBIR) grants, citing the licensed technology as a key component in the creation of energy storage and advanced sensor prototypes for government agencies.

Upon successful completion of Phase I and Phase II SBIR grants, HyCarb will work with prime contractors to supply various federal agencies with state-of-the-art energy storage devices and sensors to detect hazardous materials.

The company also has plans to incorporate their technology into the consumer battery market. In addition to reducing the overall weight of current batteries, HyCarb intends to utilize the specific characteristics of its licensed carbon materials to improve battery charge times and cycles while extending its overall life. The technology will minimize the risk of failure resulting from fire, lessen the amount of energy used to create the batteries and minimize the number of batteries that end up in landfills.

"Our carbon materials will power the next generation of electronic equipment, from laptops to cell phones," says Cottrell. "For instance, cell phones will be equipped with light-weight batteries able to power the device for up to five days on a single charge."

"We feel that the carbon nanotube technology has the potential to revolutionize energy conversion and storage," says Svetlana Shtrom, director of UCF's Office of Technology Transfer. "We are thrilled to partner with HyCarb's dedicated team of experts to take this technology to the next level."

HyCarb, Inc. plans to continue working closely with the UCF NanoScience Technology Center, employing students and graduates with expertise in nanotechnology.

####

About University of Central Florida
he University of Central Florida, the nation’s second-largest university with nearly 60,000 students, has grown in size, quality, diversity and reputation in its first 50 years. Today, the university offers more than 200 degree programs at its main campus in Orlando and more than a dozen other locations. UCF is an economic engine attracting and supporting industries vital to the region’s future while providing students with real-world experiences that help them succeed after graduation. UCF's research & commercialization enterprise is fueled by more than $1 billion in funding over the last decade and is ranked among the top 25 universities in the world for patent production.

About HyCarb, Inc.

HyCarb, Inc. is a Florida-based, for-profit, woman-owned small business, headquartered at the UCF Business Incubator in Research Park. HyCarb is developing leading-edge batteries, super-capacitors, fuel cells, solar panels, sensors, catalysts, filters and transistors that utilize graphene and carbon nanotube technologies to deliver safe, efficient, state-of-the-art products and systems for advanced nano-materials and energy storage systems. HyCarb aims to create enough value for carbon-based products that there is no need to burn fossil fuels or waste carbon dioxide out of our smokestacks and tailpipes. www.hycarbinc.com

For more information, please click here

Contacts:
Christa Santos
407-882-1576

Copyright © University of Central Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Superconductivity

Scientists Pinpoint Energy Flowing Through Vibrations in Superconducting Crystals: Interactions between electrons and the atomic structure of high-temperature superconductors impacted by elusive and powerful vibrations May 4th, 2018

When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level April 16th, 2018

Superconductivity in an alloy with quasicrystal structure March 27th, 2018

Piezomagnetic material changes magnetic properties when stretched March 22nd, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

The first PE blown films with nanotubes hit the Chinese market April 26th, 2018

Plasmons triggered in nanotube quantum wells: Rice, Tokyo Metropolitan scientists create platform for unique near-infrared devices March 16th, 2018

Discoveries

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Announcements

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Patents/IP/Tech Transfer/Licensing

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Leti Silicon Photonics Design Kit Available in Synopsis OptoDesigner Suite: Kit Contains Design Rules and Building Blocks for Multi-Project Wafers And Custom Runs on Leti’s Si310 Platform April 5th, 2018

NTU scientists create customizable, fabric-like power source for wearable electronics January 30th, 2018

IBM Breaks Records to Top U.S. Patent List for 25th Consecutive Year: IBM Inventors Receive Record 9,043 Patents in 2017 in Areas such as Artificial Intelligence, Cloud, Blockchain, Cybersecurity and Quantum Computing January 11th, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Mining for gold with a computer: Texas A&M team gleans new insights on key material May 3rd, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Ultra-powerful batteries made safer, more efficient: Team aims to curb formation of harmful crystal-like masses in lithium metal batteries April 12th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project