Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A Crystal Wedding in the Nanocosmos

Indium arsenide (green-cyan) is perfectly integrated into the silicon nanowire (blue). (Energy-dispersive X-ray spectroscopy).
Photo: HZDR/Prucnal
Indium arsenide (green-cyan) is perfectly integrated into the silicon nanowire (blue). (Energy-dispersive X-ray spectroscopy).

Photo: HZDR/Prucnal

Abstract:
Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Vienna University of Technology and the Maria Curie-Skłodowska University Lublin have succeeded in embedding nearly perfect semiconductor crystals into a silicon nanowire. With this new method of producing hybrid nanowires, very fast and multi-functional processing units can be accommodated on a single chip in the future. The research results will be published in the journal Nano Research.

A Crystal Wedding in the Nanocosmos

Dresden, Germany | Posted on July 23rd, 2014

Nano-optoelectronics are considered the cornerstone of future chip technology, but the research faces major challenges: on the one hand, electronic components must be accommodated into smaller and smaller spaces. On the other hand, what are known as compound semiconductors are to be embedded into conventional materials. In contrast to silicon, many of such semiconductors with extremely high electron mobility could improve performance of the most modern silicon-based CMOS technology.

Scientists from the HZDR, Vienna University of Technology and Maria Curie-Skłodowska University Lublin have now come a step closer to both these targets: they integrated compound semiconductor crystals made of indium arsenide (InAs) into silicon nanowires, which are ideally suited for constructing increasingly compact chips.

This integration of crystals was the greatest obstacle for such "hetero-nanowires" until now: beyond the nanometer range, crystal lattice mismatch always led to numerous defects. The researchers have now managed a near-perfect production and embedding of the InAs crystals into the nanowires for the first time.

Implanted atoms form crystals in the liquid-phase

In order to carry out this process, ion beam synthesis and heat treatment with xenon flash-lamps were used, two technologies in which the Ion Beam Center of the HZDR has held experience for many years. The scientists initially needed to introduce a determined number of atoms precisely into the wires using ion implantation. They then carried out the flash-lamp annealing of the silicon wires in their liquid-phase within a matter of only twenty milliseconds. "A silicon oxide shell, measuring merely fifteen-nanometers-thick, maintains the form of the liquid nanowire," explains HZDR scientist Dr. Slawomir Prucnal, "while the implanted atoms form the indium-arsenide crystals."

Dr. Wolfgang Skorupa, the head of the research group adds: "The atoms diffuse in the liquid-silicon-phase so rapidly that within milliseconds they form flawless mono-crystals delineated from their surroundings with nearly perfect interfaces." In the next step, the scientists want to implement different compound semiconductors into Silicon nanowires and also optimize the size and distribution of the crystals.

Publication: Prucnal, S. et al. (just accepted, 7/2014). III-V semiconductor nanocrystal formation in silicon nanowires via liquid-phase epitaxy. Nano Research. DOI 10.1007/s12274-014-0536-6

####

For more information, please click here

Contacts:
Christine Bohnet

49-351-260-2450

Dr. Slawomir Prucnal
The Institute of Ion Beam Physics and Materials Research at the HZDR
Tel. +49 351 260 2065

Copyright © Helmholtz-Zentrum Dresden-Rossendorf

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Chip Technology

Creating new materials with quantum effects for electronics January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

New pathway to valleytronics January 27th, 2015

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Discoveries

Creating new materials with quantum effects for electronics January 29th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchersí crystal-production insights resolve manufacturing difficulty January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Announcements

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Discovery Channel taps Angstron Materials for segment featuring graphene advances January 29th, 2015

Asteroid Mining 101: A New Book by World-Renowned Expert Dr. John S. Lewis - Exclusive Sneak-Peek Opportunity for Book Reviewers and Media January 29th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchersí crystal-production insights resolve manufacturing difficulty January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Research partnerships

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE