Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NIST shows ultrasonically propelled nanorods spin dizzyingly fast

In this image, a nanoparticle traces the microvortical flow around a nanorod rotating at up to 150,000 RPM propelled by ultrasound.

Credit: Balk/NIST
In this image, a nanoparticle traces the microvortical flow around a nanorod rotating at up to 150,000 RPM propelled by ultrasound.

Credit: Balk/NIST

Abstract:
Vibrate a solution of rod-shaped metal nanoparticles in water with ultrasound and they'll spin around their long axes like tiny drill bits. Why? No one yet knows exactly. But researchers at the National Institute of Standards and Technology (NIST) have clocked their speed—and it's fast. At up to 150,000 revolutions per minute, these nanomotors rotate 10 times faster than any nanoscale object submerged in liquid ever reported.

NIST shows ultrasonically propelled nanorods spin dizzyingly fast

Gaithersburg, MD | Posted on July 22nd, 2014

The discovery of this dizzying rate has opened up the possibility that they could be used not only for moving around inside the body—the impetus for the research—but also for high-speed machining and mixing.

Scientists have been studying how to make nanomotors move around in liquids for the past several years. A group at Penn State looking for a biologically friendly way to propel nanomotors first observed that metal nanorods were moving and rotating in response to ultrasound in 2012. Another group at the University of California San Diego then directed the metal rods' forward motion using a magnetic field. The Penn State group then demonstrated that these nanomotors could be propelled inside of a cancer cell.

But no one knew why or how fast the nanomotors were spinning. The latter being a measurement problem, researchers at NIST worked with the Penn State group to solve it.

"If nanomotors are to be used in a biological environment, then it is important to understand how they interact with the liquid and objects around them," says NIST project leader Samuel Stavis. "We used nanoparticles to trace the flow of water around the nanomotors, and we used that measurement to infer their rate of rotation. We found that the nanomotors were spinning surprisingly rapidly."

The NIST team clocked the nanomotors' rotation by mixing the 2-micrometer-long, 300-nanometer-wide gold rods with 400-nanometer-diameter polystyrene beads in water and putting them between glass and silicon plates with a speaker-type shaker beneath. They then vibrated the shaker at an ultrasonic tone of 3 megahertz—much too high for you or your dog to hear—and watched the motors and beads move.

As the motors rotate in water, they create a vortex around them. Beads that get close get swept up by the vortex and swirl around the rods. By measuring how far the beads are from the rods and how fast they move, the group was able to work out how quickly the motors were spinning—with an important caveat.

"The size of the nanorods is important in our measurements" says NIST physicist Andrew Balk. "We found that even small variations in the rod's dimensions cause large measurement uncertainties, so they need to be fabricated as uniformly as possible for future studies and applications."

According to the researchers, the speed of the nanomotors' rotation seems to be independent of their forward motion. Being able to control the "speed and feed" of the nanomotors independently would open up the possibility that they could be used as rotary tools for machining and mixing.

Future avenues of research include trying to discover exactly why the motors rotate and how the vortex around the rods affects their interactions with each other.

###

*A.L. Balk, L.O. Mair, P.P. Mathai, P.N. Patrone, W.Wang, S. Ahmed, T.E. Mallouk, J.A. Liddle and S.M. Stavis. Kilohertz rotation of nanorods propelled by ultrasound, traced by microvortex advection of nanoparticles. ACS Nano, Articles ASAP (As Soon As Publishable) Publication Date (Web): July 14, 2014. DOI: 10.1021/nn502753x.

####

For more information, please click here

Contacts:
Mark Esser

301-975-8735

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

News and information

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Molecular Machines

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Ribosome Research in Atomic Detail Offers Potential Insights into Cancer, Anemia, Alzheimer’s: New movement during decoding occurs in humans, not in bacteria July 3rd, 2014

Molecular Nanotechnology

Nanoscale assembly line August 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Nanomedicine

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

Discoveries

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Announcements

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE