Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny laser sensor heightens bomb detection sensitivity

The plasmon laser sensor consists of a thin slab of semiconductor separated from the metal surface by a dielectric gap layer. Surface defects on the semiconductor interact with molecules of the explosive DNT.  Image by Ren-Min Ma and Sadao Ota
The plasmon laser sensor consists of a thin slab of semiconductor separated from the metal surface by a dielectric gap layer. Surface defects on the semiconductor interact with molecules of the explosive DNT.

Image by Ren-Min Ma and Sadao Ota

Abstract:
New technology under development at the University of California, Berkeley, could soon give bomb-sniffing dogs some serious competition.

Tiny laser sensor heightens bomb detection sensitivity

Berkeley, CA | Posted on July 19th, 2014

A team of researchers led by Xiang Zhang, UC Berkeley professor of mechanical engineering, has found a way to dramatically increase the sensitivity of a light-based plasmon sensor to detect incredibly minute concentrations of explosives. They noted that it could potentially be used to sniff out a hard-to-detect explosive popular among terrorists.

Their findings are to be published Sunday, July 20, in the advanced online publication of the journal Nature Nanotechnology.

They put the sensor to the test with various explosives - 2,4-dinitrotoluene (DNT), ammonium nitrate and nitrobenzene - and found that the device successfully detected the airborne chemicals at concentrations of 0.67 parts per billion, 0.4 parts per billion and 7.2 parts per million, respectively. One part per billion would be akin to a blade of grass on a football field.

The researchers noted that this is much more sensitive than the published results to date for other optical sensors.

"Optical explosive sensors are very sensitive and compact," said Zhang, who is also director of the Materials Science Division at the Lawrence Berkeley National Laboratory and director of the National Science Foundation Nanoscale Science and Engineering Center at UC Berkeley. "The ability to magnify such a small trace of an explosive to create a detectable signal is a major development in plasmon sensor technology, which is one of the most powerful tools we have today."

The new sensor could have many advantages over current bomb-screening methods.

"Bomb-sniffing dogs are expensive to train and they can become tired," said study co-lead author Ren-Min Ma, an assistant professor of physics at Peking University who did this work when he was a postdoctoral researcher in Zhang's lab. "The other thing we see at airports is the use of swabs to check for explosive residue, but those have relatively low-sensitivity and require physical contact. Our technology could lead to a bomb-detecting chip for a handheld device that can detect the tiny-trace vapor in the air of the explosive's small molecules."

The sensor could also be developed into an alarm for unexploded land mines that are otherwise difficult to detect, the researchers said. According to the United Nations, landmines kill 15,000 to 20,000 people every year. Most of the victims are children, women and the elderly.

Unstable and hungry for electrons

The nanoscale plasmon sensor used in the lab experiments is much smaller than other explosive detectors on the market. It consists of a layer of cadmium sulfide, a semiconductor, laid on top of a sheet of silver with a layer of magnesium fluoride in the middle.

In designing the device, the researchers took advantage of the chemical makeup of many explosives, particularly nitro-compounds such as DNT and its more well-known relative, TNT. Not only do the unstable nitro groups make the chemicals more explosive, they are also characteristically electron deficient, the researchers said. This quality increases the interaction of the molecules with natural surface defects on the semiconductor. The device works by detecting the increased intensity in the light signal that occurs as a result of this interaction.

Potential use to sense hard-to-detect explosive

"We think that higher electron deficiency of explosives leads to a stronger interaction with the semiconductor sensor," said study co-lead author Sadao Ota, a former Ph.D. student in Zhang's lab who is now an assistant professor of chemistry at the University of Tokyo.

Because of this, the researchers are hopeful that their plasmon laser sensor could detect pentaerythritol tetranitrate, or PETN, an explosive compound considered a favorite of terrorists. Small amounts of it pack a powerful punch, and because it is plastic, it escapes x-ray machines when not connected to detonators. It is the explosive found in Richard Reid's shoe bomb in 2001 and Umar Farouk Abdulmtallab's underwear bomb in 2009.

U.S. Attorney General Eric Holder Jr. was recently quoted in news reports as having "extreme, extreme concern" about Yemeni bomb makers joining forces with Syrian militants to develop these hard-to-detect bombs, which can be hidden in cell phones and mobile devices.

"PETN has more nitro functional groups and is more electron deficient than the DNT we detected in our experiments, so the sensitivity of our device should be even higher than with DNT," said Ma.

Latest generation of plasmon sensors

The sensor represents the latest milestone in surface plasmon sensor technology, which is now used in the medical field to detect biomarkers in the early stages of disease.

The ability to increase the sensitivity of optical sensors had traditionally been restricted by the diffraction limit, a limitation in fundamental physics that forces a tradeoff between how long and how small light can be trapped. By coupling electromagnetic waves with surface plasmons, the oscillating electrons found at the surface of metals, researchers were able to squeeze light into nanosized spaces, but sustaining the confined energy was challenging because light tends to dissipate at a metal's surface.

The new device builds upon earlier work in plasmon lasers by Zhang's lab that compensated for this light leakage by using reflectors to bounce the surface plasmons back and forth inside the sensor - similar to the way sound waves are reflected across the room in a whispering gallery - and using the optical gain from the semiconductor to amplify the light energy.

Zhang said the amplified sensor creates a much stronger signal than the passive plasmon sensors currently available, which work by detecting shifts in the wavelength of light. "The difference in intensity is similar to going from a light bulb for a table lamp to a laser pointer," he said. "We create a sharper signal which makes it easier to detect even smaller changes for tiny traces of explosives in the air."

The researchers noted that the sensor could have applications beyond chemical and explosive detection, such as use in biomolecular research.

The U.S. Air Force Office of Scientific Research Multi-University Research Initiative program helped support this work.

####

For more information, please click here

Contacts:
Sarah Yang
Media Relations

(510) 643-7741

Xiang Zhang

(510) 225-8559

Ren-Min Ma

(510) 984-3586
(Email first to schedule interview)

Sadao Ota

(510) 984-4551
(Email first to schedule interview)

Copyright © University of California Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Engineers take plasmon lasers out of deep freeze (UC Berkeley press release):

World's smallest semiconductor laser heralds new era in optical science (UC Berkeley press release):

Related News Press

News and information

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Govt.-Legislation/Regulation/Funding/Policy

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

Sensors

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Discoveries

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Announcements

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Homeland Security

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Military

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nano-lipid particles from edible ginger could improve drug delivery for colon cancer, study finds September 8th, 2016

3-D graphene has promise for bio applications: Rice University-led team welds nanoscale sheets to form tough, porous material September 7th, 2016

Photonics/Optics/Lasers

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Research partnerships

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic