Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Tiny laser sensor heightens bomb detection sensitivity

The plasmon laser sensor consists of a thin slab of semiconductor separated from the metal surface by a dielectric gap layer. Surface defects on the semiconductor interact with molecules of the explosive DNT.  Image by Ren-Min Ma and Sadao Ota
The plasmon laser sensor consists of a thin slab of semiconductor separated from the metal surface by a dielectric gap layer. Surface defects on the semiconductor interact with molecules of the explosive DNT.

Image by Ren-Min Ma and Sadao Ota

Abstract:
New technology under development at the University of California, Berkeley, could soon give bomb-sniffing dogs some serious competition.

Tiny laser sensor heightens bomb detection sensitivity

Berkeley, CA | Posted on July 19th, 2014

A team of researchers led by Xiang Zhang, UC Berkeley professor of mechanical engineering, has found a way to dramatically increase the sensitivity of a light-based plasmon sensor to detect incredibly minute concentrations of explosives. They noted that it could potentially be used to sniff out a hard-to-detect explosive popular among terrorists.

Their findings are to be published Sunday, July 20, in the advanced online publication of the journal Nature Nanotechnology.

They put the sensor to the test with various explosives - 2,4-dinitrotoluene (DNT), ammonium nitrate and nitrobenzene - and found that the device successfully detected the airborne chemicals at concentrations of 0.67 parts per billion, 0.4 parts per billion and 7.2 parts per million, respectively. One part per billion would be akin to a blade of grass on a football field.

The researchers noted that this is much more sensitive than the published results to date for other optical sensors.

"Optical explosive sensors are very sensitive and compact," said Zhang, who is also director of the Materials Science Division at the Lawrence Berkeley National Laboratory and director of the National Science Foundation Nanoscale Science and Engineering Center at UC Berkeley. "The ability to magnify such a small trace of an explosive to create a detectable signal is a major development in plasmon sensor technology, which is one of the most powerful tools we have today."

The new sensor could have many advantages over current bomb-screening methods.

"Bomb-sniffing dogs are expensive to train and they can become tired," said study co-lead author Ren-Min Ma, an assistant professor of physics at Peking University who did this work when he was a postdoctoral researcher in Zhang's lab. "The other thing we see at airports is the use of swabs to check for explosive residue, but those have relatively low-sensitivity and require physical contact. Our technology could lead to a bomb-detecting chip for a handheld device that can detect the tiny-trace vapor in the air of the explosive's small molecules."

The sensor could also be developed into an alarm for unexploded land mines that are otherwise difficult to detect, the researchers said. According to the United Nations, landmines kill 15,000 to 20,000 people every year. Most of the victims are children, women and the elderly.

Unstable and hungry for electrons

The nanoscale plasmon sensor used in the lab experiments is much smaller than other explosive detectors on the market. It consists of a layer of cadmium sulfide, a semiconductor, laid on top of a sheet of silver with a layer of magnesium fluoride in the middle.

In designing the device, the researchers took advantage of the chemical makeup of many explosives, particularly nitro-compounds such as DNT and its more well-known relative, TNT. Not only do the unstable nitro groups make the chemicals more explosive, they are also characteristically electron deficient, the researchers said. This quality increases the interaction of the molecules with natural surface defects on the semiconductor. The device works by detecting the increased intensity in the light signal that occurs as a result of this interaction.

Potential use to sense hard-to-detect explosive

"We think that higher electron deficiency of explosives leads to a stronger interaction with the semiconductor sensor," said study co-lead author Sadao Ota, a former Ph.D. student in Zhang's lab who is now an assistant professor of chemistry at the University of Tokyo.

Because of this, the researchers are hopeful that their plasmon laser sensor could detect pentaerythritol tetranitrate, or PETN, an explosive compound considered a favorite of terrorists. Small amounts of it pack a powerful punch, and because it is plastic, it escapes x-ray machines when not connected to detonators. It is the explosive found in Richard Reid's shoe bomb in 2001 and Umar Farouk Abdulmtallab's underwear bomb in 2009.

U.S. Attorney General Eric Holder Jr. was recently quoted in news reports as having "extreme, extreme concern" about Yemeni bomb makers joining forces with Syrian militants to develop these hard-to-detect bombs, which can be hidden in cell phones and mobile devices.

"PETN has more nitro functional groups and is more electron deficient than the DNT we detected in our experiments, so the sensitivity of our device should be even higher than with DNT," said Ma.

Latest generation of plasmon sensors

The sensor represents the latest milestone in surface plasmon sensor technology, which is now used in the medical field to detect biomarkers in the early stages of disease.

The ability to increase the sensitivity of optical sensors had traditionally been restricted by the diffraction limit, a limitation in fundamental physics that forces a tradeoff between how long and how small light can be trapped. By coupling electromagnetic waves with surface plasmons, the oscillating electrons found at the surface of metals, researchers were able to squeeze light into nanosized spaces, but sustaining the confined energy was challenging because light tends to dissipate at a metal's surface.

The new device builds upon earlier work in plasmon lasers by Zhang's lab that compensated for this light leakage by using reflectors to bounce the surface plasmons back and forth inside the sensor - similar to the way sound waves are reflected across the room in a whispering gallery - and using the optical gain from the semiconductor to amplify the light energy.

Zhang said the amplified sensor creates a much stronger signal than the passive plasmon sensors currently available, which work by detecting shifts in the wavelength of light. "The difference in intensity is similar to going from a light bulb for a table lamp to a laser pointer," he said. "We create a sharper signal which makes it easier to detect even smaller changes for tiny traces of explosives in the air."

The researchers noted that the sensor could have applications beyond chemical and explosive detection, such as use in biomolecular research.

The U.S. Air Force Office of Scientific Research Multi-University Research Initiative program helped support this work.

####

For more information, please click here

Contacts:
Sarah Yang
Media Relations

(510) 643-7741

Xiang Zhang

(510) 225-8559

Ren-Min Ma

(510) 984-3586
(Email first to schedule interview)

Sadao Ota

(510) 984-4551
(Email first to schedule interview)

Copyright © University of California Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Engineers take plasmon lasers out of deep freeze (UC Berkeley press release):

World's smallest semiconductor laser heralds new era in optical science (UC Berkeley press release):

Related News Press

News and information

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Sensors

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Discoveries

Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

Nanoparticles Accumulate Quickly in Wetland Sediment: Aquatic food chains might be harmed by molecules "piggybacking" on carbon nanoparticles October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Announcements

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Homeland Security

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Seeking Nanoscale Defenses for Biological and Chemical Threats: WPI co-organizes a NATO workshop to improve the detection and decontamination of biological and chemical agents September 13th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Military

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Photonics/Optics/Lasers

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Speed at its limits September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Research partnerships

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

Research mimics brain cells to boost memory power September 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE