Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Self-assembling nanoparticle could improve MRI scanning for cancer diagnosis: Scientists have designed a new self-assembling nanoparticle that targets tumours, to help doctors diagnose cancer earlier

Abstract:
The new nanoparticle, developed by researchers at Imperial College London, boosts the effectiveness of Magnetic Resonance Imaging (MRI) scanning by specifically seeking out receptors that are found in cancerous cells.

Self-assembling nanoparticle could improve MRI scanning for cancer diagnosis: Scientists have designed a new self-assembling nanoparticle that targets tumours, to help doctors diagnose cancer earlier

London, UK | Posted on July 16th, 2014

The nanoparticle is coated with a special protein, which looks for specific signals given off by tumours, and when it finds a tumour it begins to interact with the cancerous cells. This interaction strips off the protein coating, causing the nanoparticle to self-assemble into a much larger particle so that it is more visible on the scan.

A new study published in the journal Angewandte Chemie, used cancer cells and mouse models to compare the effects of the self-assembling nanoparticle in MRI scanning against commonly used imaging agents and found that the nanoparticle produced a more powerful signal and created a clearer MRI image of the tumour.

The scientists say the nanoparticle increases the sensitivity of MRI scanning and will ultimately improve doctor's ability to detect cancerous cells at much earlier stages of development.

Professor Nicholas Long from the Department of Chemistry at Imperial College London said the results show real promise for improving cancer diagnosis. "By improving the sensitivity of an MRI examination, our aim is to help doctors spot something that might be cancerous much more quickly. This would enable patients to receive effective treatment sooner, which would hopefully improve survival rates from cancer."

"MRI scanners are found in nearly every hospital up and down the country and they are vital machines used every day to scan patients' bodies and get to the bottom of what might be wrong. But we are aware that some doctors feel that even though MRI scanners are effective at spotting large tumours, they are perhaps not as good at detecting smaller tumours in the early stages", added Professor Long.

The newly designed nanoparticle provides a tool to improve the sensitivity of MRI scanning, and the scientists are now working to enhance its effectiveness. Professor Long said: "We would like to improve the design to make it even easier for doctors to spot a tumour and for surgeons to then operate on it. We're now trying to add an extra optical signal so that the nanoparticle would light up with a luminescent probe once it had found its target, so combined with the better MRI signal it will make it even easier to identify tumours."

Before testing and injecting the non-toxic nanoparticle into mice, the scientists had to make sure that it would not become so big when it self-assembled that it would cause damage. They injected the nanoparticle into a saline solution inside a petri dish and monitored its growth over a four hour period. The nanoparticle grew from 100 to 800 nanometres - still small enough to not cause any harm.

The scientists are now improving the nanoparticle and hope to test their design in a human trial within the next three to five years.

Dr Juan Gallo from the Department of Surgery and Cancer at Imperial College London said: "We're now looking at fine tuning the size of the final nanoparticle so that it is even smaller but still gives an enhanced MRI image. If it is too small the body will just secrete it out before imaging, but too big and it could be harmful to the body. Getting it just right is really important before moving to a human trial."

###

The research was funded by Cancer Research UK, Engineering and Physical Sciences Research Council (EPSRC), the Medical Research Council (MRC) and the Department of Health (grant C2536/A10337).

####

About Imperial College London
Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

For more information, please click here

Contacts:
Gail Wilson

44-020-759-46702

Copyright © Imperial College London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

1. Gallo, J et al. 2014. 'CXCR4-Targeted and MMP-Responsive Iron Oxide Nanoparticles for Enhanced Magnetic Resonance Imaging'. Angewandte Chemie, July 2014. DOI: 10.1002/anie.201405442

Related News Press

News and information

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Imaging

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

FEI Technology Award of the German Neuroscience Society Goes to Benjamin Judkewitz of the University of Berlin: Bi-annual award honors excellence in brain research during the German Neuroscience Society’s Annual Meeting, held 18-21 March 2015 March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Nanorobotic agents open the blood-brain barrier, offering hope for new brain treatments March 25th, 2015

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Mind the gap: Nanoscale speed bump could regulate plasmons for high-speed data flow April 1st, 2015

Cooling massive objects to the quantum ground state April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Nanomedicine

A novel way to apply drugs to dental plaque Nanoparticles release drugs to reduce tooth decay April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Nanion Technologies Appoints James Costantin as Director of Customer Relations: Nanion is pleased to announce the appointment of Dr. James Costantin as Director of Customer Relations at Nanion Technologies Inc. March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Discoveries

Mind the gap: Nanoscale speed bump could regulate plasmons for high-speed data flow April 1st, 2015

Cooling massive objects to the quantum ground state April 1st, 2015

A novel way to apply drugs to dental plaque Nanoparticles release drugs to reduce tooth decay April 1st, 2015

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

Announcements

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE