Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Projecting a Three-Dimensional Future: TAU researchers develop holography technology that could change the way we view the world

Abstract:
Since the 1960s, theatergoers have shelled out for crude 3-D glasses, polarized glasses, and shutter glasses to enhance their viewing experience. These basic devices, used to trick the brain into perceiving an artificial three-dimensional reality, may soon be rendered obsolete with the introduction of new holography technology developed by Tel Aviv University researchers.

Projecting a Three-Dimensional Future: TAU researchers develop holography technology that could change the way we view the world

New York, NY | Posted on July 9th, 2014

Tel Aviv University doctoral students Yuval Yifat, Michal Eitan, and Zeev Iluz have developed highly efficient holography based on nanoantennas that could be used for security as well as medical and recreational purposes. Prof. Yael Hanein, of TAU's School of Electrical Engineering and head of TAU's Center for Nanoscience and Nanotechnology, and Prof. Jacob Scheuer and Prof. Amir Boag of the School of Electrical Engineering, led the development team. Their research, published in the American Chemical Society's publication Nano Letters, uses the parameters of light itself to create dynamic and complex holographic images.

In order to effect a three-dimensional projection using existing technology, two-dimensional images must be "replotted" — rotated and expanded to achieve three-dimension-like vision. But the team's nanoantenna technology permits newly designed holograms to replicate the appearance of depth without being replotted. The applications for the technology are vast and diverse, according to the researchers, who have already been approached by commercial entities interested in the technology.

Taking out the map

"We had this interesting idea — to play with the parameters of light, the phase of light," said Yifat. "If we could dynamically change the relation between light waves, we could create something that projected dynamically — like holographic television, for example. The applications for this are endless. If you take light and shine it on a specially engineered nanostructure, you can project it in any direction you want and in any form that you want. This leads to interesting results."

The researchers worked in the lab for over a year to develop and patent a small metallic nanoantenna chip that, together with an adapted holography algorithm, could determine the "phase map" of a light beam. "Phase corresponds with the distance light waves have to travel from the object you are looking at to your eye," said Prof. Hanein. "In real objects, our brains know how to interpret phase information so you get a feeling of depth, but when you look at a photograph, you often lose this information so the photographs look flat. Holograms save the phase information, which is the basis of 3-D imagery. This is truly one of the holy grails of visual technology."

According to the researchers, their methodology is the first of its kind to successfully produce high-resolution holographic imagery that can be projected efficiently in any direction.

"We can use this technology to reflect any desired object," said Prof. Scheuer. "Before, scientists were able to produce only basic shapes — circles and stripes, for example. We used, as our model, the logo of Tel Aviv University, which has a very specific design, and were able to achieve the best results seen yet."

The key to complex imagery

"This can be used for scientific research, security, medical, engineering, and recreational purposes," said Prof. Scheuer. "Imagine a surgeon, who is forcedto replot several CAT-SCAN images to generate an accurate picture. By generating just one holographic image, she could examine symptoms from every angle. Similarly, an architect could draw up a holographic blueprint that he could actually walk through and inspect. The applications are truly endless."

The new technology could also be used to improve laser-based radars used for military purposes as well as advance anti-counterfeiting techniques that safeguard against theft.

"We optimized holograms to the highest resolution and created a new methodology able to produce any arbitrary image," said Prof. Scheuer. "Everything was done here, at the facilities of Tel Aviv University Center for Nanoscience and Nanotechnology; including the fabrication, characterization and experiments."

The researchers are currently developing technology that will allow holographic images to change shape and move.

####

For more information, please click here

Contacts:
George Hunka

212-742-9070

Copyright © American Friends of Tel Aviv University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Nanotech Grants Options September 22nd, 2016

Leti and Oberthur Technologies Partner to Explore New Solutions in Fast-growing Digital Era September 12th, 2016

Imaging

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Oxford Instruments Asylum Research Announces New SurfRider Econo Board Probes for Routine AFM Measurements September 19th, 2016

Display technology/LEDs/SS Lighting/OLEDs

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

Silicon nanoparticles instead of expensive semiconductors: Within an international collaboration, physicists of the Moscow State University replace expensive semiconductors with affordable silicon nanoparticles for display production September 9th, 2016

Low-cost and defect-free graphene: FAU researchers make key break-through September 7th, 2016

Discoveries

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Announcements

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Military

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nano-lipid particles from edible ginger could improve drug delivery for colon cancer, study finds September 8th, 2016

3-D graphene has promise for bio applications: Rice University-led team welds nanoscale sheets to form tough, porous material September 7th, 2016

Nanodiamonds in an instant: Rice University-led team morphs nanotubes into tougher carbon for spacecraft, satellites September 6th, 2016

Photonics/Optics/Lasers

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic