Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Let there be light: Chemists develop magnetically responsive liquid crystals - UC Riverside discovery has applications in signage, posters, writing tablets, billboards and anti-counterfeit technology

Top: Scheme showing magnetic control over light transmittance in the novel liquid crystals. B is the alternating magnetic field. The polarized light is seen in yellow. The gray rods represent the polarizers. The magnetic field controls the orientation of the nanorods (seen in orange), which in turn affects the polarization of the light and, then, the amount of light that can pass through the polarizers. Bottom: Images show how a polarization-modulated pattern changes darkness/brightness by rotating the direction of the cross polarizers. The circles and background contain magnetic nanorods aligned at different orientations. Research by the Yin Lab at UC Riverside shows that by combining magnetic alignment and lithography processes, it is possible to create patterns of different polarizations in a thin composite film and control over the transmittance of light in particular areas.

Credit: Yin Lab, UC Riverside.
Top: Scheme showing magnetic control over light transmittance in the novel liquid crystals. B is the alternating magnetic field. The polarized light is seen in yellow. The gray rods represent the polarizers. The magnetic field controls the orientation of the nanorods (seen in orange), which in turn affects the polarization of the light and, then, the amount of light that can pass through the polarizers. Bottom: Images show how a polarization-modulated pattern changes darkness/brightness by rotating the direction of the cross polarizers. The circles and background contain magnetic nanorods aligned at different orientations. Research by the Yin Lab at UC Riverside shows that by combining magnetic alignment and lithography processes, it is possible to create patterns of different polarizations in a thin composite film and control over the transmittance of light in particular areas.

Credit: Yin Lab, UC Riverside.

Abstract:
Chemists at the University of California, Riverside have constructed liquid crystals with optical properties that can be instantly and reversibly controlled by an external magnetic field. The research paves the way for novel display applications relying on the instantaneous and contactless nature of magnetic manipulation-such as signage, posters, writing tablets, and billboards.

Let there be light: Chemists develop magnetically responsive liquid crystals - UC Riverside discovery has applications in signage, posters, writing tablets, billboards and anti-counterfeit technology

Riverside, CA | Posted on June 26th, 2014

Commercially available liquid crystals, used in modern electronic displays, are composed of rod-like or plate-like molecules. When an electric field is applied, the molecules rotate and align themselves along the field direction, resulting in a rapid tuning of transmitted light.

"The liquid crystals we developed are essentially a liquid dispersion, a simple aqueous dispersion of magnetic nanorods," said Yadong Yin, an associate professor of chemistry, who led the research project. "We use magnetic nanorods in place of the commercial nonmagnetic rod-like molecules. Optically these magnetic rods work in a similar way to commercial rod-like molecules, with the added advantage of being able to respond rapidly to external magnetic fields."

Yin explained that upon the application of a magnetic field, the nanorods spontaneously rotate and realign themselves parallel to the field direction, and influence the transmittance of polarized light.

Study results appear online in Nano Letters. How light passing through the magnetic liquid crystal is controlled simply by altering the direction of an external magnetic field can be seen here and here.

The magnetically actuated liquid crystals developed by the Yin Lab have several unique advantages. First, they can be operated remotely by an external magnetic field, with no electrodes needed. (Electrical switching of commercial liquid crystals requires transparent electrodes which are very expensive to make.) Second, the nanorods are much larger than the molecules used in commercial liquid crystals. As a result, their orientation can be conveniently fixed by solidifying the dispersing matrix.

Further, the magnetic nanorods can be used to produce thin-film liquid crystals, the orientation of which can be fixed entirely or in just selected areas by combining magnetic alignment and lithographic processes. This allows patterns of different polarizations to be created as well as control over the transmittance of polarized light in select areas.

"Such a thin film does not display visual information under normal light, but shows high contrast patterns under polarized light, making it immediately very useful for anti-counterfeit applications," Yin said. "This is not possible with commercial liquid crystals. In addition, the materials involved in our magnetic liquid crystals are made of iron oxide and silica, which are much cheaper and more eco-friendly than the commercial organic molecules-based liquid crystals."

The liquid crystals may also find applications as optical modulators— optical communication devices for controlling the amplitude, phase, polarization, propagation direction of light.

The discovery came about when Yin's lab first had the idea of using magnetic nanorods to replace rod-shaped molecules in commercial systems to produce liquid crystals that can be magnetically controlled. After looking into the literature, the research team realized that the main challenge in producing practically useful magnetic liquid crystals was in the synthesis of magnetic nanorods.

"Prior attempts had been limited to materials with very limited magnetic responses," Yin said. "We utilized our expertise in colloidal nanostructure synthesis to produce magnetite nanorods that can form liquid crystals and respond strongly to even very weak magnetic fields - even a fridge magnet can operate our liquid crystals."

###

The research was supported by grants to Yin by the National Science Foundation and the U.S. Army Research Laboratory.

Yin was joined in the research by Mingsheng Wang and Le He at UCR; and Serkan Zorba at Whittier College, Calif.

The UCR Office of Technology Commercialization has filed a patent on the technology reported in the research paper.

####

About University of California - Riverside
The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

For more information, please click here

Contacts:
Iqbal Pittalwala

951-827-6050

Copyright © University of California - Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Videos/Movies

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Columbia engineers invent breakthrough millimeter-wave circulator IC October 6th, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Display technology/LEDs/SS Lighting/OLEDs

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Missing atoms in a forgotten crystal bring luminescence October 10th, 2017

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Discoveries

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Announcements

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Patents/IP/Tech Transfer/Licensing

Nanoparticles limit damage in spinal cord injury: Injection after an injury reduces inflammation and scarring September 6th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

Military

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project