Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanoscale velcro used for molecule transport

This image shows an import protein coated molecule moving on the "dirty velcro."

Credit: Biozentrum, University of Basel
This image shows an import protein coated molecule moving on the "dirty velcro."

Credit: Biozentrum, University of Basel

Abstract:
Biological membranes are like a guarded border. They separate the cell from the environment and at the same time control the import and export of molecules. The nuclear membrane can be crossed via many tiny pores. Scientists at the Biozentrum and the Swiss Nanoscience Institute at the University of Basel, together with an international team of researchers, have discovered that proteins found within the nuclear pore function similar to a velcro. In Nature Nanotechnology, they report how these proteins can be used for controlled and selective transport of particles.

Nanoscale velcro used for molecule transport

Basel, Switzerland | Posted on June 25th, 2014

There is much traffic in our cells. Many proteins, for example, need to travel from their production site in the cytoplasm to the nucleus, where they are used to read genetic information. Pores in the nuclear membrane enable their transport into and out of the cell nucleus. The Argovia Professor Roderick Lim, from the Biozentrum and the Swiss Nanoscience Institute at the University of Basel, studies the biophysical basics of this transport. In order to better understand this process, he has created an artificial model of the nuclear pore complex, together with scientists from Lausanne and Cambridge, which has led to the discovery that its proteins function like a nanoscale "velcro" which can be used to transport tiniest particles.

"Dirty velcro" inside the nuclear pore

Nuclear pores are protein complexes within the nuclear membrane that enables molecular exchange between the cytoplasm and nucleus. The driving force is diffusion. Nuclear pores are lined with "velcro" like proteins. Only molecules specially marked with import proteins can bind to these proteins and thus pass the pore. But for all non-binding molecules the nuclear pore acts as a barrier. The researchers postulated that transport depends on the strength of binding to the "velcro" like proteins. The binding should be just strong enough that molecules to be transported can bind but at the same time not too tight so that they can still diffuse through the pore.

In an artificial system recreating the nuclear pore, the researchers tested their hypothesis. They coated particles with import proteins and studied their behavior on the molecular "velcro". Interestingly, the researchers found parallels in behavior to the velcro strip as we know it. On "clean velcro", the particles stick immediately. However, when the "velcro" is filled or "dirtied" with import proteins, it is less adhesive and the particles begin to slide over its surface just by diffusion. "Understanding how the transport process functions in the nuclear pore complex was decisive for our discovery," says Lim. "With the nanoscale 'velcro' we should be able to define the path to be taken as well as speed up the transport of selected particles without requiring external energy."

Potential lab-on-a-chip technology applications

Lim's investigations of biomolecular transport processes form the basis for the discovery of this remarkable phenomenon that particles can be transported selectively with a molecular "velcro". "This principle could find very practical applications, for instance as nanoscale conveyor belts, escalators or tracks," explains Lim. This could also potentially be applied to further miniaturize lab-on-chip technology, tiny labs on chips, where this newly discovered method of transportation would make today's complex pump and valve systems obsolete.

####

For more information, please click here

Contacts:
Katrin Bühler

Copyright © University of Basel

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original source

doi: 10.1038/nnano.2014.103:

Related News Press

News and information

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Molecular Machines

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Molecular Nanotechnology

Fast, cheap nanomanufacturing: Arrays of tiny conical tips that eject ionized materials could fabricate nanoscale devices cheaply October 4th, 2014

Nano-bearings on the test bench: Fullerene spheres can be used to slide in the nanoworld October 3rd, 2014

Penn Team Studies Nanocrystals by Passing Them Through Tiny Pores September 26th, 2014

Nanoscale assembly line August 29th, 2014

Nanomedicine

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Tuning light to kill deep cancer tumors: Nanoparticles developed at UMass Medical School advance potential clinical application for photodynamic therapy October 15th, 2014

Discoveries

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Plastic nanoparticles also harm freshwater organisms October 18th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanotechnology Improves Quality of Anti-Corrosive Coatings October 17th, 2014

Announcements

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Plastic nanoparticles also harm freshwater organisms October 18th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanotechnology Improves Quality of Anti-Corrosive Coatings October 17th, 2014

Nanobiotechnology

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

DNA nano-foundries cast custom-shaped metal nanoparticles: DNA's programmable assembly is leveraged to form precise 3D nanomaterials for disease detection, environmental testing, electronics and beyond October 10th, 2014

Charged graphene gives DNA a stage to perform molecular gymnastics October 9th, 2014

Nanoparticles get a magnetic handle: New method produces particles that can glow with color-coded light and be manipulated with magnets October 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE