Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A researcher at the UJI generates high electron mobility gases in semiconductor nanowires for the first time

Miquel RoyoCredit: DAMIÁN LLORENS
Miquel Royo

Credit: DAMIÁN LLORENS

Abstract:
Nanotechnology, optics and photovoltaic energy are among the fields that can benefit from advances in knowledge on semiconductor nanowire systems. Researchers at the Universitat Jaume I in Castelló (UJI), the Consiglio Nazionale delle Ricerche in Italy and the Walter Schottky Institut in Germany have succeeded to prove, for the first time, the accumulation of high electron mobility gases in multilayer nanowires from a technique called "remote doping".

A researcher at the UJI generates high electron mobility gases in semiconductor nanowires for the first time

Valencia, Spain | Posted on June 16th, 2014

This technique, which is currently being used as standard in industry, has allowed for more than 35 years to obtain high electron mobility devices typically based on multilayer planar structures. Research published in the journal Nano Letters collects for the first time the obtaining of these high mobility electrons in an entirely new morphology, such as gallium arsenide nanowires, a hexagonal tube at nanoscale growing on a silicon surface and radially coated with other semiconductor materials. This unique multilayer structure can create spaces in nanowires where electrons move free of impurities at high speed. In this sense, Miquel Royo, researcher at the Quantum Chemistry Group at the UJI, stresses that they have achieved "the highest electron mobility in semiconductor nanowires that has been published to date".

The study showed that the experimental measurements performed by German researchers on doped nanowires are consistent with computer simulations carried out by the researcher at the UJI, in which the existence of a high electron mobility gas in the nanowire is assumed. Theoretical simulations of the system have also led to the conclusion that "the resulting electron gas has a mixed dimensionality. The electrons tend to be located at the interfaces between the different layers of the nanowire, which gives them a two-dimensional character. However, due to the peculiar hexagonal shape of the nanowires and the repulsion between the electrons, it has been observed that these are accumulated predominantly at the vertex of the heterostructure, thus forming unidimensional channels.

Without needing doping elements

The journal Nano Letters recently published a new study by the same researcher at the Quantum Chemistry Group at the UJI in collaboration with researchers from the Laboratoire National des Champs Mannétiques Intenses in Toulouse (France). In this study, they have managed to generate again electronic gases in multilayer nanowires, but this time without requiring the introduction of doping elements intentionally.

The study shows that a thin layer of gallium arsenide grown on the nanowire between two aluminum arsenide layers acts as a trap for the carbon atoms that are present in all growth chamber. "The carbon accumulated in the nanowire acts, in turn, as a dopant that has not been intentionally added, and it creates the appearance, in this case, of an electron hole gas", explains Royo, noting that "in this way, we get an alternative technique for obtaining electronic gases in this complex technical systems". The verification of the presence of electron hole gas in the nanowires was carried out by confronting experimental measurements of photoluminescence with computer simulations performed by the same researcher at the UJI.

The results presented in both publications represent important technological advances, especially in the field of nanoelectronics, "that is particularly useful to have nanodevices in which the mobility of electrons is so high, especially for high frequency applications such as mobile phones that require that you have a low power dissipation", says the researcher at the Universitat Jaume I. He adds that "once we are able to reproducibly grow this new type of semiconductor nanostructures, they will represent an ideal scenario to study the fundamental properties of high mobility electronic gases in new mixed dimensionality morphologies".


Full bibliographic information

Stefan Funk, Miguel Royo, Ilaria Zardo, Daniel Rudolph, Stefanie Morkötter, Benedikt Mayer, Jonathan Becker, Alexander Bechtold , Sonja Matich, Markus Döblinger , Max Bichler, Gregor Koblmüller, Jonathan J. Finley, Andrea Bertoni, Guido Goldoni, and Gerhard Abstreiter "High Mobility One- and Two-Dimensional Electron Systems in Nanowire-Based Quantum Heterostructures" Nano Letters, 2013, 13 (12), pp 6189-6196

J. Jadczak, P. Plochocka, A. Mitioglu, I. Breslavetz, M. Royo, A. Bertoni , G. Goldoni, T. Smolenski, P. Kossacki, A. Kretinin, Hadas Shtrikman and D. K. Maude "Unintentional High-Density p-Type Modulation Doping of a GaAs/AlAs Core-Multishell Nanowire" Nano Letters, 2014, 14 (5), pp 2807-2814

####

For more information, please click here

Contacts:
Lauren Kelly Wickman
+34 961625478

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Chip Technology

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Discoveries

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Announcements

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Energy

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Industrial

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Supersonic spray yields new nanomaterial for bendable, wearable electronics: Film of self-fused nanowires clear as glass, conducts like metal November 23rd, 2016

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

Forge Nano raises $20 million in Series A Funding: Nano coating technology innovator Forge Nano will use funding to expand manufacturing capacity and grow Lithium-Ion battery opportunities November 3rd, 2016

Photonics/Optics/Lasers

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Researcher's discovery of new crystal structure holds promise for optoelectronic devices January 6th, 2017

The researchers created a tiny laser using nanoparticles January 5th, 2017

Solar/Photovoltaic

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Going green with nanotechnology December 21st, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project