Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A researcher at the UJI generates high electron mobility gases in semiconductor nanowires for the first time

Miquel RoyoCredit: DAMIÁN LLORENS
Miquel Royo

Credit: DAMIÁN LLORENS

Abstract:
Nanotechnology, optics and photovoltaic energy are among the fields that can benefit from advances in knowledge on semiconductor nanowire systems. Researchers at the Universitat Jaume I in Castelló (UJI), the Consiglio Nazionale delle Ricerche in Italy and the Walter Schottky Institut in Germany have succeeded to prove, for the first time, the accumulation of high electron mobility gases in multilayer nanowires from a technique called "remote doping".

A researcher at the UJI generates high electron mobility gases in semiconductor nanowires for the first time

Valencia, Spain | Posted on June 16th, 2014

This technique, which is currently being used as standard in industry, has allowed for more than 35 years to obtain high electron mobility devices typically based on multilayer planar structures. Research published in the journal Nano Letters collects for the first time the obtaining of these high mobility electrons in an entirely new morphology, such as gallium arsenide nanowires, a hexagonal tube at nanoscale growing on a silicon surface and radially coated with other semiconductor materials. This unique multilayer structure can create spaces in nanowires where electrons move free of impurities at high speed. In this sense, Miquel Royo, researcher at the Quantum Chemistry Group at the UJI, stresses that they have achieved "the highest electron mobility in semiconductor nanowires that has been published to date".

The study showed that the experimental measurements performed by German researchers on doped nanowires are consistent with computer simulations carried out by the researcher at the UJI, in which the existence of a high electron mobility gas in the nanowire is assumed. Theoretical simulations of the system have also led to the conclusion that "the resulting electron gas has a mixed dimensionality. The electrons tend to be located at the interfaces between the different layers of the nanowire, which gives them a two-dimensional character. However, due to the peculiar hexagonal shape of the nanowires and the repulsion between the electrons, it has been observed that these are accumulated predominantly at the vertex of the heterostructure, thus forming unidimensional channels.

Without needing doping elements

The journal Nano Letters recently published a new study by the same researcher at the Quantum Chemistry Group at the UJI in collaboration with researchers from the Laboratoire National des Champs Mannétiques Intenses in Toulouse (France). In this study, they have managed to generate again electronic gases in multilayer nanowires, but this time without requiring the introduction of doping elements intentionally.

The study shows that a thin layer of gallium arsenide grown on the nanowire between two aluminum arsenide layers acts as a trap for the carbon atoms that are present in all growth chamber. "The carbon accumulated in the nanowire acts, in turn, as a dopant that has not been intentionally added, and it creates the appearance, in this case, of an electron hole gas", explains Royo, noting that "in this way, we get an alternative technique for obtaining electronic gases in this complex technical systems". The verification of the presence of electron hole gas in the nanowires was carried out by confronting experimental measurements of photoluminescence with computer simulations performed by the same researcher at the UJI.

The results presented in both publications represent important technological advances, especially in the field of nanoelectronics, "that is particularly useful to have nanodevices in which the mobility of electrons is so high, especially for high frequency applications such as mobile phones that require that you have a low power dissipation", says the researcher at the Universitat Jaume I. He adds that "once we are able to reproducibly grow this new type of semiconductor nanostructures, they will represent an ideal scenario to study the fundamental properties of high mobility electronic gases in new mixed dimensionality morphologies".


Full bibliographic information

Stefan Funk, Miguel Royo, Ilaria Zardo, Daniel Rudolph, Stefanie Morkötter, Benedikt Mayer, Jonathan Becker, Alexander Bechtold , Sonja Matich, Markus Döblinger , Max Bichler, Gregor Koblmüller, Jonathan J. Finley, Andrea Bertoni, Guido Goldoni, and Gerhard Abstreiter "High Mobility One- and Two-Dimensional Electron Systems in Nanowire-Based Quantum Heterostructures" Nano Letters, 2013, 13 (12), pp 6189-6196

J. Jadczak, P. Plochocka, A. Mitioglu, I. Breslavetz, M. Royo, A. Bertoni , G. Goldoni, T. Smolenski, P. Kossacki, A. Kretinin, Hadas Shtrikman and D. K. Maude "Unintentional High-Density p-Type Modulation Doping of a GaAs/AlAs Core-Multishell Nanowire" Nano Letters, 2014, 14 (5), pp 2807-2814

####

For more information, please click here

Contacts:
Lauren Kelly Wickman
+34 961625478

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Chip Technology

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

New method to generate arbitrary optical pulses January 21st, 2015

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Discoveries

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Fullerex launches 2015 edition of the Bulk Graphene Pricing Report January 26th, 2015

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Energy

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Industrial

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

Materials - Next-generation insulation ... January 13th, 2015

Photonics/Optics/Lasers

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

New method to generate arbitrary optical pulses January 21st, 2015

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Solar/Photovoltaic

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

New technique helps probe performance of organic solar cell materials January 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE