Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A researcher at the UJI generates high electron mobility gases in semiconductor nanowires for the first time

Miquel RoyoCredit: DAMIÁN LLORENS
Miquel Royo

Credit: DAMIÁN LLORENS

Abstract:
Nanotechnology, optics and photovoltaic energy are among the fields that can benefit from advances in knowledge on semiconductor nanowire systems. Researchers at the Universitat Jaume I in Castelló (UJI), the Consiglio Nazionale delle Ricerche in Italy and the Walter Schottky Institut in Germany have succeeded to prove, for the first time, the accumulation of high electron mobility gases in multilayer nanowires from a technique called "remote doping".

A researcher at the UJI generates high electron mobility gases in semiconductor nanowires for the first time

Valencia, Spain | Posted on June 16th, 2014

This technique, which is currently being used as standard in industry, has allowed for more than 35 years to obtain high electron mobility devices typically based on multilayer planar structures. Research published in the journal Nano Letters collects for the first time the obtaining of these high mobility electrons in an entirely new morphology, such as gallium arsenide nanowires, a hexagonal tube at nanoscale growing on a silicon surface and radially coated with other semiconductor materials. This unique multilayer structure can create spaces in nanowires where electrons move free of impurities at high speed. In this sense, Miquel Royo, researcher at the Quantum Chemistry Group at the UJI, stresses that they have achieved "the highest electron mobility in semiconductor nanowires that has been published to date".

The study showed that the experimental measurements performed by German researchers on doped nanowires are consistent with computer simulations carried out by the researcher at the UJI, in which the existence of a high electron mobility gas in the nanowire is assumed. Theoretical simulations of the system have also led to the conclusion that "the resulting electron gas has a mixed dimensionality. The electrons tend to be located at the interfaces between the different layers of the nanowire, which gives them a two-dimensional character. However, due to the peculiar hexagonal shape of the nanowires and the repulsion between the electrons, it has been observed that these are accumulated predominantly at the vertex of the heterostructure, thus forming unidimensional channels.

Without needing doping elements

The journal Nano Letters recently published a new study by the same researcher at the Quantum Chemistry Group at the UJI in collaboration with researchers from the Laboratoire National des Champs Mannétiques Intenses in Toulouse (France). In this study, they have managed to generate again electronic gases in multilayer nanowires, but this time without requiring the introduction of doping elements intentionally.

The study shows that a thin layer of gallium arsenide grown on the nanowire between two aluminum arsenide layers acts as a trap for the carbon atoms that are present in all growth chamber. "The carbon accumulated in the nanowire acts, in turn, as a dopant that has not been intentionally added, and it creates the appearance, in this case, of an electron hole gas", explains Royo, noting that "in this way, we get an alternative technique for obtaining electronic gases in this complex technical systems". The verification of the presence of electron hole gas in the nanowires was carried out by confronting experimental measurements of photoluminescence with computer simulations performed by the same researcher at the UJI.

The results presented in both publications represent important technological advances, especially in the field of nanoelectronics, "that is particularly useful to have nanodevices in which the mobility of electrons is so high, especially for high frequency applications such as mobile phones that require that you have a low power dissipation", says the researcher at the Universitat Jaume I. He adds that "once we are able to reproducibly grow this new type of semiconductor nanostructures, they will represent an ideal scenario to study the fundamental properties of high mobility electronic gases in new mixed dimensionality morphologies".


Full bibliographic information

Stefan Funk, Miguel Royo, Ilaria Zardo, Daniel Rudolph, Stefanie Morkötter, Benedikt Mayer, Jonathan Becker, Alexander Bechtold , Sonja Matich, Markus Döblinger , Max Bichler, Gregor Koblmüller, Jonathan J. Finley, Andrea Bertoni, Guido Goldoni, and Gerhard Abstreiter "High Mobility One- and Two-Dimensional Electron Systems in Nanowire-Based Quantum Heterostructures" Nano Letters, 2013, 13 (12), pp 6189-6196

J. Jadczak, P. Plochocka, A. Mitioglu, I. Breslavetz, M. Royo, A. Bertoni , G. Goldoni, T. Smolenski, P. Kossacki, A. Kretinin, Hadas Shtrikman and D. K. Maude "Unintentional High-Density p-Type Modulation Doping of a GaAs/AlAs Core-Multishell Nanowire" Nano Letters, 2014, 14 (5), pp 2807-2814

####

For more information, please click here

Contacts:
Lauren Kelly Wickman
+34 961625478

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Chip Technology

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Nanoelectronics

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Columbia engineers invent breakthrough millimeter-wave circulator IC October 6th, 2017

Tungsten offers nano-interconnects a path of least resistance: Crystalline tungsten shows insight and promise in addressing the challenges of electrical interconnects that have high resistivity at the nanoscale October 4th, 2017

Discoveries

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Announcements

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Industrial

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

A flexible new platform for high-performance electronics September 29th, 2017

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

Photonics/Optics/Lasers

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Solar/Photovoltaic

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project