Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A researcher at the UJI generates high electron mobility gases in semiconductor nanowires for the first time

Miquel RoyoCredit: DAMIÁN LLORENS
Miquel Royo

Credit: DAMIÁN LLORENS

Abstract:
Nanotechnology, optics and photovoltaic energy are among the fields that can benefit from advances in knowledge on semiconductor nanowire systems. Researchers at the Universitat Jaume I in Castelló (UJI), the Consiglio Nazionale delle Ricerche in Italy and the Walter Schottky Institut in Germany have succeeded to prove, for the first time, the accumulation of high electron mobility gases in multilayer nanowires from a technique called "remote doping".

A researcher at the UJI generates high electron mobility gases in semiconductor nanowires for the first time

Valencia, Spain | Posted on June 16th, 2014

This technique, which is currently being used as standard in industry, has allowed for more than 35 years to obtain high electron mobility devices typically based on multilayer planar structures. Research published in the journal Nano Letters collects for the first time the obtaining of these high mobility electrons in an entirely new morphology, such as gallium arsenide nanowires, a hexagonal tube at nanoscale growing on a silicon surface and radially coated with other semiconductor materials. This unique multilayer structure can create spaces in nanowires where electrons move free of impurities at high speed. In this sense, Miquel Royo, researcher at the Quantum Chemistry Group at the UJI, stresses that they have achieved "the highest electron mobility in semiconductor nanowires that has been published to date".

The study showed that the experimental measurements performed by German researchers on doped nanowires are consistent with computer simulations carried out by the researcher at the UJI, in which the existence of a high electron mobility gas in the nanowire is assumed. Theoretical simulations of the system have also led to the conclusion that "the resulting electron gas has a mixed dimensionality. The electrons tend to be located at the interfaces between the different layers of the nanowire, which gives them a two-dimensional character. However, due to the peculiar hexagonal shape of the nanowires and the repulsion between the electrons, it has been observed that these are accumulated predominantly at the vertex of the heterostructure, thus forming unidimensional channels.

Without needing doping elements

The journal Nano Letters recently published a new study by the same researcher at the Quantum Chemistry Group at the UJI in collaboration with researchers from the Laboratoire National des Champs Mannétiques Intenses in Toulouse (France). In this study, they have managed to generate again electronic gases in multilayer nanowires, but this time without requiring the introduction of doping elements intentionally.

The study shows that a thin layer of gallium arsenide grown on the nanowire between two aluminum arsenide layers acts as a trap for the carbon atoms that are present in all growth chamber. "The carbon accumulated in the nanowire acts, in turn, as a dopant that has not been intentionally added, and it creates the appearance, in this case, of an electron hole gas", explains Royo, noting that "in this way, we get an alternative technique for obtaining electronic gases in this complex technical systems". The verification of the presence of electron hole gas in the nanowires was carried out by confronting experimental measurements of photoluminescence with computer simulations performed by the same researcher at the UJI.

The results presented in both publications represent important technological advances, especially in the field of nanoelectronics, "that is particularly useful to have nanodevices in which the mobility of electrons is so high, especially for high frequency applications such as mobile phones that require that you have a low power dissipation", says the researcher at the Universitat Jaume I. He adds that "once we are able to reproducibly grow this new type of semiconductor nanostructures, they will represent an ideal scenario to study the fundamental properties of high mobility electronic gases in new mixed dimensionality morphologies".


Full bibliographic information

Stefan Funk, Miguel Royo, Ilaria Zardo, Daniel Rudolph, Stefanie Morkötter, Benedikt Mayer, Jonathan Becker, Alexander Bechtold , Sonja Matich, Markus Döblinger , Max Bichler, Gregor Koblmüller, Jonathan J. Finley, Andrea Bertoni, Guido Goldoni, and Gerhard Abstreiter "High Mobility One- and Two-Dimensional Electron Systems in Nanowire-Based Quantum Heterostructures" Nano Letters, 2013, 13 (12), pp 6189-6196

J. Jadczak, P. Plochocka, A. Mitioglu, I. Breslavetz, M. Royo, A. Bertoni , G. Goldoni, T. Smolenski, P. Kossacki, A. Kretinin, Hadas Shtrikman and D. K. Maude "Unintentional High-Density p-Type Modulation Doping of a GaAs/AlAs Core-Multishell Nanowire" Nano Letters, 2014, 14 (5), pp 2807-2814

####

For more information, please click here

Contacts:
Lauren Kelly Wickman
+34 961625478

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project