Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nano/Micromotors for biological and chemical applications

Abstract:
Researchers from the ICN2 Nanobioelectronics and Biosensors Group, led by ICREA Research Professor Arben Merkoçi, publish an extensive review in Chemical Reviews about these ultra-small devices with an extraordinary potential.

Nano/Micromotors for biological and chemical applications

Barcelona, Spain | Posted on May 28th, 2014

Nano- and micromotors are ultra-small devices designed to perform selected mechanical movements in response to specific stimuli. These movements include rotation, rolling, shuttling, delivery, contraction or collective behaviour, depending on the design of the motor and its biologically or chemically functionalized components.

These devices are principally characterized according to the type of energy input that they use, as their operating mechanism is strongly related to the energy source. It can be fuel (natural or synthetic), or a physical source (e.g., light, magnetic fields, electric fields, or ultrasonic acoustic waves). Nano- and micromotors are often mimics of natural biological motors.

Researchers from the Nanobioelectronics and Biosensors Group at the Institut Català de Nanociència i Nanotecnologia (ICN2) have recently published an extensive review in Chemical Reviews entitled "Nano/Micromotors in (Bio)chemical Science Applications". The authors of this work, summarizing the state-of-the art knowledge about the design of such devices for biological and chemical applications, are Dr. Maria Guix, Dr. Carmen C. Mayorga-Martinez, and Prof. Arben Merkoçi, ICREA Research Professor and Group Leader at ICN2.

Over the past decade, researchers have shown increased interest in nano- and micromotors. After preliminary works which constituted a proof of concept, research in this area is progressing into specific applications for areas such as biomedicine (e.g., diagnostics), environmental monitoring and remediation, food safety, and security.

The review explains examples of natural biological motors, like those present in the cytoskeleton, the DNA- or RNA-processing enzymes or the bacterial rotary flagellar motors, which have inspired several engineered nano- and micromotors. After that, the authors highlight the latest achievements in synthetic motors, including catalytic nanomotors based on various chemical or biochemical fuels, and discuss the respective limitations of these devices. Their movement depends on an external source (light, magnetic or electric fields, or ultrasonic waves). Finally, the review provides an overview of hybrid motors, which integrate natural biological parts with synthetic components across a range of materials and functionalities.

The article concludes that nano- and micromotors offer extraordinary potential for future biochemical and biomedical applications. Various energy sources have been explored to increase the lifetime of these devices and make them compatible with in vivo applications. The final goal is the remote operation of nano- and micromotors in the human body as fully controllable nanorobots, but right now it still belongs to science fiction literature. The next years of research will be crucial to determine if these dreamt devices will become real.

####

For more information, please click here

Contacts:
Alex Argemi
Communication Manager


Edifici ICN2
08193 — Bellaterra (Barcelona) Spain
Teléfono: + 34 93 737 26 49
Fax: + 34 93 737 26 48

Copyright © Institut Catalŕ de Nanocičncia i Nanotec

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article Reference:

Related News Press

News and information

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Chemistry

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Aromatic food chemistry to the making of copper nanowires November 24th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Molecular Machines

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Molecular Nanotechnology

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

Manipulating complex molecules by hand: New method in scanning probe microscopy: Jülich researchers create a word using 47 molecules November 6th, 2014

Measuring nano-vibrations November 5th, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Nanomedicine

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Discoveries

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Announcements

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE