Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Luminescent nanocrystal tags and high-speed scanner enable rapid detection of multiple pathogens in a single test

J. Paul Robinson
J. Paul Robinson

Abstract:
On-the-fly Decoding Luminescence Lifetimes in the μs Region for Lanthanide-Encoded Suspension Arrays

Yiqing Lu, Jie Lu, Jiangbo Zhao, Janet Cusido, Francisco M. Raymo, Jingli Yuan, Sean Yang, Robert C. Leif, Yujing Huo, James A. Piper, J. Paul Robinson, Ewa M. Goldys, and Dayong Jin

Significant multiplexing capacity of optical time-domain coding has been recently demonstrated by tuning luminescence lifetimes of the upconversion nanoparticles called "τ-Dots". It provides a large dynamic range of lifetimes from microseconds to milliseconds, which allows creating large libraries of nanotags/microcarriers. However a robust approach is required to rapidly and accurately measure the luminescence lifetimes from the relatively slow-decaying signals. Here, we show a fast algorithm suitable for the μs region with precision closely approaching the theoretical limit and compatible with the rapid scanning cytometry technique. We exploited this approach to further extend optical time-domain multiplexing to the down-conversion luminescence, using luminescence microspheres wherein lifetimes were tuned through Luminescence Resonance Energy Transfer (LRET). We demonstrated real-time discrimination of the LRET microspheres in the rapid scanning cytometry, and applied them to the multiplexed probing of pathogen DNA strands. Our results indicate that tunable luminescence lifetimes have considerable potential in high-throughput analytical sciences.

DOI: 10.1038/ncomms4741

Luminescent nanocrystal tags and high-speed scanner enable rapid detection of multiple pathogens in a single test

West Lafayette, IN | Posted on May 8th, 2014

A research team using tunable luminescent nanocrystals as tags to advance medical and security imaging have successfully applied them to high-speed scanning technology and detected multiple viruses within minutes.

The research, led by Macquarie University in Sydney, Australia and Purdue University, builds on the team's earlier success in developing a way to control the length of time light from a luminescent nanocrystal lingers, which introduced the dimension of time in addition to color and brightness in optical detection technology.

Detection based on the lifetime of the light from a nanocrystal as well as its specific color exponentially increases the possible combinations and unique tags that could be created for biomedical screens.

"We now are able to build a huge library of lifetime color-coded microspheres to perform multiple medical tasks or diagnoses at the same time," said Yiqing Lu, a researcher at Macquarie University, who led the research. "The time saved by omitting the need to grow or amplify a culture sample for testing and eliminating the need to run multiple tests will save future patients precious time so treatment can begin, which can be life-saving when managing aggressive diseases."

The technology could enable screens that identify thousands of different target molecules simultaneously, said J. Paul Robinson, the Professor of Cytomics in Purdue's College of Veterinary Medicine and professor in Purdue's Weldon School of Biomedical Engineering, who was involved in the research.

"This is the second part of the puzzle," said Robinson, who led the biological testing of the technology. "Now we've successfully measured the lifetimes of these tags on the fly at thousands of samples per second. The next step is to perform such high-throughput testing within a liquid, like water, blood or urine. That will open the door to widespread biological use and clinical applications, as well as the detection of pathogens in food or water."

Robinson's research focuses on flow cytometry, the analysis of cells that are contained in a liquid flowing past a laser beam. In addition to developing instrumentation to measure the tags, he plans to explore the technology's health care and biodetection applications.

The research team attached unique tags to DNA strands of HIV, Ebola virus, Hepatitis B virus and Human Papillomavirus 16. The tags were accurately read and distinguished at high speeds in suspension arrays. The team's work is detailed in a paper that will be published in the next issue of Nature Communications and is currently available online.

Dayong Jin, an Australian Research Council Future Fellow, and a professor of photonics at Macquarie ARC Centre for nanoscale BioPhotonics (CNBP), led the design and manufacture of the nanoparticles, which the researchers named tau-dots.

In addition to Jin, Lu and Robinson, paper co-authors include Jie Lu, Jiangbo Zhao, Ewa M. Goldys, and James A. Piper of Macquarie; Janet Cusido and Francisco M. Raymo of the University of Miami; Jingli Yuan of Dalian University of Technology in Dalian, China; , Sean Yang and Robert C. Leif of Newport Instruments in San Diego; and Yujing Huo of Tsinghua Univesity in Beijing, China.

The Australian Research Council funded this work.

####

For more information, please click here

Contacts:
Writer:
Elizabeth K. Gardner

765-494-2081

Media contact for Macquarie University:
Amy Macintyre
02-9850-4051


Sources:
J. Paul Robinson
765-494-0757


Dayong Jin
+61 2 98504168


Yiqing Lu
+61 2 98504169

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Purdue University Cytometry Laboratories:

J. Paul Robinson web page:

Related News Press

News and information

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Imaging

Industry’s First Dedicated Cryo-DualBeam System Automates Preparation of Frozen, Biological Samples: New Thermo Scientific Aquilos FIB/SEM protects sample integrity and enhances productivity for cryo-electron tomography workflow August 8th, 2017

Thermo Fisher Scientific Advances Cryo-EM Leadership to Drive Structural Biology Discoveries: New Thermo Scientific Krios G3i raises bar for performance, automation and time-to-results Breakthrough Thermo Scientific Glacios provides a cryo-EM entry path for a broader range of res August 8th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Nanomedicine

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

JPK reports on how the University of Glasgow is using their NanoWizard® AFM and CellHesion module to study how cells interact with their surroundings August 2nd, 2017

Discoveries

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Announcements

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Tools

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

Research partnerships

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project