Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Luminescent nanocrystal tags and high-speed scanner enable rapid detection of multiple pathogens in a single test

J. Paul Robinson
J. Paul Robinson

Abstract:
On-the-fly Decoding Luminescence Lifetimes in the μs Region for Lanthanide-Encoded Suspension Arrays

Yiqing Lu, Jie Lu, Jiangbo Zhao, Janet Cusido, Francisco M. Raymo, Jingli Yuan, Sean Yang, Robert C. Leif, Yujing Huo, James A. Piper, J. Paul Robinson, Ewa M. Goldys, and Dayong Jin

Significant multiplexing capacity of optical time-domain coding has been recently demonstrated by tuning luminescence lifetimes of the upconversion nanoparticles called "τ-Dots". It provides a large dynamic range of lifetimes from microseconds to milliseconds, which allows creating large libraries of nanotags/microcarriers. However a robust approach is required to rapidly and accurately measure the luminescence lifetimes from the relatively slow-decaying signals. Here, we show a fast algorithm suitable for the μs region with precision closely approaching the theoretical limit and compatible with the rapid scanning cytometry technique. We exploited this approach to further extend optical time-domain multiplexing to the down-conversion luminescence, using luminescence microspheres wherein lifetimes were tuned through Luminescence Resonance Energy Transfer (LRET). We demonstrated real-time discrimination of the LRET microspheres in the rapid scanning cytometry, and applied them to the multiplexed probing of pathogen DNA strands. Our results indicate that tunable luminescence lifetimes have considerable potential in high-throughput analytical sciences.

DOI: 10.1038/ncomms4741

Luminescent nanocrystal tags and high-speed scanner enable rapid detection of multiple pathogens in a single test

West Lafayette, IN | Posted on May 8th, 2014

A research team using tunable luminescent nanocrystals as tags to advance medical and security imaging have successfully applied them to high-speed scanning technology and detected multiple viruses within minutes.

The research, led by Macquarie University in Sydney, Australia and Purdue University, builds on the team's earlier success in developing a way to control the length of time light from a luminescent nanocrystal lingers, which introduced the dimension of time in addition to color and brightness in optical detection technology.

Detection based on the lifetime of the light from a nanocrystal as well as its specific color exponentially increases the possible combinations and unique tags that could be created for biomedical screens.

"We now are able to build a huge library of lifetime color-coded microspheres to perform multiple medical tasks or diagnoses at the same time," said Yiqing Lu, a researcher at Macquarie University, who led the research. "The time saved by omitting the need to grow or amplify a culture sample for testing and eliminating the need to run multiple tests will save future patients precious time so treatment can begin, which can be life-saving when managing aggressive diseases."

The technology could enable screens that identify thousands of different target molecules simultaneously, said J. Paul Robinson, the Professor of Cytomics in Purdue's College of Veterinary Medicine and professor in Purdue's Weldon School of Biomedical Engineering, who was involved in the research.

"This is the second part of the puzzle," said Robinson, who led the biological testing of the technology. "Now we've successfully measured the lifetimes of these tags on the fly at thousands of samples per second. The next step is to perform such high-throughput testing within a liquid, like water, blood or urine. That will open the door to widespread biological use and clinical applications, as well as the detection of pathogens in food or water."

Robinson's research focuses on flow cytometry, the analysis of cells that are contained in a liquid flowing past a laser beam. In addition to developing instrumentation to measure the tags, he plans to explore the technology's health care and biodetection applications.

The research team attached unique tags to DNA strands of HIV, Ebola virus, Hepatitis B virus and Human Papillomavirus 16. The tags were accurately read and distinguished at high speeds in suspension arrays. The team's work is detailed in a paper that will be published in the next issue of Nature Communications and is currently available online.

Dayong Jin, an Australian Research Council Future Fellow, and a professor of photonics at Macquarie ARC Centre for nanoscale BioPhotonics (CNBP), led the design and manufacture of the nanoparticles, which the researchers named tau-dots.

In addition to Jin, Lu and Robinson, paper co-authors include Jie Lu, Jiangbo Zhao, Ewa M. Goldys, and James A. Piper of Macquarie; Janet Cusido and Francisco M. Raymo of the University of Miami; Jingli Yuan of Dalian University of Technology in Dalian, China; , Sean Yang and Robert C. Leif of Newport Instruments in San Diego; and Yujing Huo of Tsinghua Univesity in Beijing, China.

The Australian Research Council funded this work.

####

For more information, please click here

Contacts:
Writer:
Elizabeth K. Gardner

765-494-2081

Media contact for Macquarie University:
Amy Macintyre
02-9850-4051


Sources:
J. Paul Robinson
765-494-0757


Dayong Jin
+61 2 98504168


Yiqing Lu
+61 2 98504169

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Purdue University Cytometry Laboratories:

J. Paul Robinson web page:

Related News Press

News and information

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Imaging

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Govt.-Legislation/Regulation/Funding/Policy

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Nanomedicine

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

Discoveries

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Announcements

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Tools

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Tracing barnacle's footprint August 19th, 2016

XEI Scientific celebrates its Silver Anniversary August 16th, 2016

Research partnerships

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Tracing barnacle's footprint August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic