Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Better solar cells, better LED light and vast optical possibilities

Electron microscope picture of wurtzite GaA/AIGaAs core-shell nanowires.(Dr. Dheeraj Dasa and Prof. Helge Weman, NTNU).
Electron microscope picture of wurtzite GaA/AIGaAs core-shell nanowires.
(Dr. Dheeraj Dasa and Prof. Helge Weman, NTNU).

Abstract:
Changes at the atom level in nanowires offer vast possibilities for improvement of solar cells and LED light. NTNU-researchers have discovered that by tuning a small strain on single nanowires they can become more effective in LEDs and solar cells.



CrayoNano AS introduces a hybrid material with unique properties. This is obtained by growing semiconductor nanowires on graphene.

Better solar cells, better LED light and vast optical possibilities

Gloshaugen, Norway | Posted on April 12th, 2014

NTNU researchers Dheeraj Dasa and Helge Weman have, in cooperation with IBM, discovered that gallium arsenide can be tuned with a small strain to function efficiently as a single light-emitting diode or a photodetector. This is facilitated by the special hexagonal crystal structure, referred to as wurtzite, which the NTNU researchers have succeeded in growing in the MBE lab at NTNU. The results were published in Nature Communications this week.

The last few years have seen significant breakthroughs in nanowire and graphene research at NTNU. In 2010, Professors Helge Weman, Bjørn-Ove Fimland and Ton van Helvoort and their academic group went public with their first groundbreaking discoveries within the field.

The researchers, who specialise on growing nanowires, had succeeded in controlling a change in the crystal structure during nanowire growth. By altering the crystal structure in a substance, i.e. changing the positions of the atoms, the substance can gain entirely new properties. The NTNU researchers discovered how to alter the crystal structure in nanowires made of gallium arsenide and other semiconductors.

With that, the foundation was laid for more efficient solar cells and LEDs.

- Our discovery was that we could manipulate the structure, atom by atom. We were able to manipulate the atoms and alter the crystal structure during the growth of the nanowires. This opened up for vast new possibilities. We were among the first in the world who were able to create a new gallium arsenide material with a different crystal structure, says Helge Weman at the Department of Electronics and Telecommunications.

This process exists in nature as well. For example, diamond and graphite - the latter is used as the "lead" in pencils - are composed by the same carbon atoms. But their crystal structures are different.

And now, researchers can also change the structure of nanowires at the atom level.

Graphene, the super-material

The next big news came in 2012. At that point, the researchers had managed to make semiconductor nanowires grow on the super-material graphene. Graphene is the thinnest and strongest material ever made. This discovery was described as a revolution in solar cell and LED component development.

Over time, graphene can replace silicon as a component in electronic circuits. Today, silicon is used for producing both electronics and solar cells. Graphene conducts electricity 100 times faster than silicon, and is only one atom thick, while a silicon wafer is normally millions of times thicker. Graphene will also likely be cheaper than silicon in just a few years.

The research group has received a lot of international attention for the graphene method. Helge Weman and his NTNU co-founders Bjørn-Ove Fimland and Dong-Chul Kim have established the company CrayoNano AS, working with a patented invention that grows semiconductor nanowires on graphene. The method is called molecular beam epitaxy (MBE), and the hybrid material has good electric and optical properties.

- We are showing how to use graphene to make much more effective and flexible electronic products, initially solar cells and white light-emitting diodes (LED). The future holds much more advanced applications, says Weman.

Highly effective solar cells

- Our goal is to create solar cells that are more effective than when they are made with thin film technology, Weman emphasises.

Thin film technology is a term from the solar cell technology. This technology develops super-thin solar cell panels, where the active layer converting sunlight to electricity has a thickness of no more than three micrometres, i.e. three thousands of a millimetre. The low weight allows easy transportation, installation and maintenance of the solar cells, and they can in practice be rolled out like roofing felt on most buildings.

Now, the combination of nanowires and graphene facilitates much broader and more flexible solar cells.

In thin films like gallium arsenide, the atoms are placed cubically in a fixed, predefined structure. When the researchers manipulate the atom structure inside the nanowire, they can grow both cubic and hexagonal crystal structures. The different structures have completely different properties, for example when it comes to optical properties.

New discoveries, new possibilities

The last couple of years the research group has, among other things, studied the unique hexagonal crystal structure in the GaAs nanowires.

- In cooperation with IBM, we have now discovered that if we stretch these nanowires, they function quite well as light-emitting diodes. Also, if we press the nanowires, they work quite well as photodetectors. This is facilitated by the hexagonal crystal structure, called wurtzite. It makes it easier for us to change the structure to optimise the optical effect for different applications.

- It also gives us a much better understanding, allowing us to design the nanowires with a built-in compressive stress, for example to make them more effective in a solar cell. This can for instance be used to develop different pressure sensors, or to harvest electric energy when the nanowires are bent, Weman explains.

Because of this new ability to manipulate the nanowires' crystal structure, it is possible to create highly effective solar cells that produce a higher electric power. Also, the fact that CrayoNano now can grow nanowires on super-light, strong and flexible graphene, allows production of very flexible and lightweight solar cells.

The CrayoNano group will now also start growing gallium nitride nanowires for use in white light-emitting diodes.

- One of our objectives is to create gallium nitride nanowires in a newly installed MBE machine at NTNU to create light-emitting diodes with better optical properties - and grow them on graphene to make them flexible, lightweight and strong.

####

About The Norwegian University of Science and Technology (NTNU)
The Norwegian University of Science and Technology (NTNU) in Trondheim represents academic eminence in technology and the natural sciences as well as in other academic disciplines ranging from the social sciences, the arts, medicine, architecture to fine arts. Cross-disciplinary cooperation results in ideas no one else has thought of, and creative solutions that change our daily lives.

For more information, please click here

Contacts:
Helge Weman
NTNU
+ 47 91897658

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

National Space Society Congratulates SpaceX on the Falcon 9's Return to Flight January 19th, 2017

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Display technology/LEDs/SS Lighting/OLEDs

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Miniscule amounts of impurities in vacuum greatly affecting OLED lifetime December 30th, 2016

Graphene/ Graphite

Researchers design one of the strongest, lightest materials known: Porous, 3-D forms of graphene developed at MIT can be 10 times as strong as steel but much lighter January 7th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

First use of graphene to detect cancer cells: System able to detect activity level of single interfaced cell December 20th, 2016

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Discoveries

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Announcements

National Space Society Congratulates SpaceX on the Falcon 9's Return to Flight January 19th, 2017

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Energy

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Solar/Photovoltaic

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Going green with nanotechnology December 21st, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project