Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene nanoribbons as electronic switches: A new theoretical study shows the conductivity conditions under which graphene nanoribbons can become switches in externally controlled electronic devices

Graphene’s conductivity is the object of many theoretical and experimental studies© Dmitry Knorre/Fotolia
Graphene’s conductivity is the object of many theoretical and experimental studies

© Dmitry Knorre/Fotolia

Abstract:
One of graphene's most sought-after properties is its high conductivity. Argentinian and Brazilian physicists have now successfully calculated the conditions of the transport, or conductance mechanisms, in graphene nanoribbons. The results, recently published in a paper in EPJ B, yield a clearer theoretical understanding of conductivity in graphene samples of finite size, which have applications in externally controlled electronic devices.

Graphene nanoribbons as electronic switches: A new theoretical study shows the conductivity conditions under which graphene nanoribbons can become switches in externally controlled electronic devices

Heidelberg, Germany | Posted on April 8th, 2014

When the conductivity is high, the electrons, carriers of electrical current, are minimally hampered during transport through graphene. One aspect of conductivity is the electron transport gap, which is the minimal energy required for electric current to pass through the material. The electron transport gap is an important factor for applications in electronic devices, because when the transport gap is controllable, it can be used as a switch in transistors - the main components of any electronic device.
To study the electron transport gap, scientists prefer to use graphene nanoribbons, which can have variable crystallographic structures at their edges. In this EPJ B paper, the authors found that the transport gap is larger when the ribbon is narrower in width and that it is independent of the crystallographic orientation of the ribbon's edges.
The team found that the transport gap is inversely proportional to the ribbon's width and is independent of the crystallographic orientation of the ribbon's edges. Also, the conductance varies with the applied external voltage. These findings confirm previous theoretical and experimental results.
In addition, the authors focused on direct current conductivity, which is expected to jump through well-defined sharp steps, and referred to as quantisation. However, the authors' theoretical models present a somewhat different picture: the steps are not equally spaced and are not clearly separate but more blurred. By comparison, the conductance quantisation in graphene nanoribbons was previously observed experimentally in several works.
Unfortunately, none of the experiments can yet resolve the form of the steps. Further, the precision of existing measurements cannot yet clearly discriminate between different predictions for quantisation. More precise theoretical models are now required for a better understanding of the experimental behaviour of nanoribbons.

####

For more information, please click here

Contacts:
Saskia Rohmer

49-622-148-78414

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: C. G. Beneventano, I. V. Fialkovsky, E. M. Santangelo and D. V. Vassilevich (2014), Charge density and conductivity of disordered Berry-Mondragon graphene nanoribbons, European Physical Journal B, DOI 10.1140/epjb/e2014-40990-x:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project