Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphene nanoribbons as electronic switches: A new theoretical study shows the conductivity conditions under which graphene nanoribbons can become switches in externally controlled electronic devices

Graphene’s conductivity is the object of many theoretical and experimental studies© Dmitry Knorre/Fotolia
Graphene’s conductivity is the object of many theoretical and experimental studies

© Dmitry Knorre/Fotolia

Abstract:
One of graphene's most sought-after properties is its high conductivity. Argentinian and Brazilian physicists have now successfully calculated the conditions of the transport, or conductance mechanisms, in graphene nanoribbons. The results, recently published in a paper in EPJ B, yield a clearer theoretical understanding of conductivity in graphene samples of finite size, which have applications in externally controlled electronic devices.

Graphene nanoribbons as electronic switches: A new theoretical study shows the conductivity conditions under which graphene nanoribbons can become switches in externally controlled electronic devices

Heidelberg, Germany | Posted on April 8th, 2014

When the conductivity is high, the electrons, carriers of electrical current, are minimally hampered during transport through graphene. One aspect of conductivity is the electron transport gap, which is the minimal energy required for electric current to pass through the material. The electron transport gap is an important factor for applications in electronic devices, because when the transport gap is controllable, it can be used as a switch in transistors - the main components of any electronic device.
To study the electron transport gap, scientists prefer to use graphene nanoribbons, which can have variable crystallographic structures at their edges. In this EPJ B paper, the authors found that the transport gap is larger when the ribbon is narrower in width and that it is independent of the crystallographic orientation of the ribbon's edges.
The team found that the transport gap is inversely proportional to the ribbon's width and is independent of the crystallographic orientation of the ribbon's edges. Also, the conductance varies with the applied external voltage. These findings confirm previous theoretical and experimental results.
In addition, the authors focused on direct current conductivity, which is expected to jump through well-defined sharp steps, and referred to as quantisation. However, the authors' theoretical models present a somewhat different picture: the steps are not equally spaced and are not clearly separate but more blurred. By comparison, the conductance quantisation in graphene nanoribbons was previously observed experimentally in several works.
Unfortunately, none of the experiments can yet resolve the form of the steps. Further, the precision of existing measurements cannot yet clearly discriminate between different predictions for quantisation. More precise theoretical models are now required for a better understanding of the experimental behaviour of nanoribbons.

####

For more information, please click here

Contacts:
Saskia Rohmer

49-622-148-78414

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: C. G. Beneventano, I. V. Fialkovsky, E. M. Santangelo and D. V. Vassilevich (2014), Charge density and conductivity of disordered Berry-Mondragon graphene nanoribbons, European Physical Journal B, DOI 10.1140/epjb/e2014-40990-x:

Related News Press

News and information

Nanofiltration Membrane Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Graphene

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Stretching the limits on conducting wires July 25th, 2015

More efficient process to produce graphene developed by Ben-Gurion University researchers July 23rd, 2015

Chip Technology

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Discoveries

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Announcements

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanocellulose Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanocellulose Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project