Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene nanoribbons as electronic switches: A new theoretical study shows the conductivity conditions under which graphene nanoribbons can become switches in externally controlled electronic devices

Graphene’s conductivity is the object of many theoretical and experimental studies© Dmitry Knorre/Fotolia
Graphene’s conductivity is the object of many theoretical and experimental studies

© Dmitry Knorre/Fotolia

Abstract:
One of graphene's most sought-after properties is its high conductivity. Argentinian and Brazilian physicists have now successfully calculated the conditions of the transport, or conductance mechanisms, in graphene nanoribbons. The results, recently published in a paper in EPJ B, yield a clearer theoretical understanding of conductivity in graphene samples of finite size, which have applications in externally controlled electronic devices.

Graphene nanoribbons as electronic switches: A new theoretical study shows the conductivity conditions under which graphene nanoribbons can become switches in externally controlled electronic devices

Heidelberg, Germany | Posted on April 8th, 2014

When the conductivity is high, the electrons, carriers of electrical current, are minimally hampered during transport through graphene. One aspect of conductivity is the electron transport gap, which is the minimal energy required for electric current to pass through the material. The electron transport gap is an important factor for applications in electronic devices, because when the transport gap is controllable, it can be used as a switch in transistors - the main components of any electronic device.
To study the electron transport gap, scientists prefer to use graphene nanoribbons, which can have variable crystallographic structures at their edges. In this EPJ B paper, the authors found that the transport gap is larger when the ribbon is narrower in width and that it is independent of the crystallographic orientation of the ribbon's edges.
The team found that the transport gap is inversely proportional to the ribbon's width and is independent of the crystallographic orientation of the ribbon's edges. Also, the conductance varies with the applied external voltage. These findings confirm previous theoretical and experimental results.
In addition, the authors focused on direct current conductivity, which is expected to jump through well-defined sharp steps, and referred to as quantisation. However, the authors' theoretical models present a somewhat different picture: the steps are not equally spaced and are not clearly separate but more blurred. By comparison, the conductance quantisation in graphene nanoribbons was previously observed experimentally in several works.
Unfortunately, none of the experiments can yet resolve the form of the steps. Further, the precision of existing measurements cannot yet clearly discriminate between different predictions for quantisation. More precise theoretical models are now required for a better understanding of the experimental behaviour of nanoribbons.

####

For more information, please click here

Contacts:
Saskia Rohmer

49-622-148-78414

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: C. G. Beneventano, I. V. Fialkovsky, E. M. Santangelo and D. V. Vassilevich (2014), Charge density and conductivity of disordered Berry-Mondragon graphene nanoribbons, European Physical Journal B, DOI 10.1140/epjb/e2014-40990-x:

Related News Press

News and information

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Graphene/ Graphite

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Chip Technology

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

GLOBALFOUNDRIES®, ON Semiconductor Deliver the Industry’s Lowest Power Bluetooth® Low Energy SoC Family: 55nm LPx RF-enabled platform, with SST’s highly reliable embedded SuperFlash®, provides low power and cost for IoT and “Connected” Health and Wellness Devices June 19th, 2017

New prospects for universal memory -- high speed of RAM and the capacity of flash: Thin films created at MIPT could be the basis for future development of ReRAM June 17th, 2017

Nanoelectronics

GLOBALFOUNDRIES on Track to Deliver Leading-Performance 7nm FinFET Technology: New 7LP technology offers 40 percent performance boost over 14nm FinFET June 13th, 2017

Seeing the invisible with a graphene-CMOS integrated device June 6th, 2017

IBM Research Alliance Builds New Transistor for 5nm Technology: Less than two years since announcing a 7nm test chip, scientists have achieved another breakthrough June 5th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Discoveries

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Announcements

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project