Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Diamonds are an oil's best friend: Rice University leads research to find the best nanofluid for heat transfer

Nanodiamonds smaller than 6 nanometers across have proven to be an effective additive to mineral oil for thermal-transfer and storage applications, according to researchers at Rice University. The electron microscope image shows diamond nanoparticles suspended in oil. The inset shows the diffraction planes of the particles.Credit: Ajayan Group/Rice University
Nanodiamonds smaller than 6 nanometers across have proven to be an effective additive to mineral oil for thermal-transfer and storage applications, according to researchers at Rice University. The electron microscope image shows diamond nanoparticles suspended in oil. The inset shows the diffraction planes of the particles.

Credit: Ajayan Group/Rice University

Abstract:
A mixture of diamond nanoparticles and mineral oil easily outperforms other types of fluid created for heat-transfer applications, according to new research by Rice University.

Diamonds are an oil's best friend: Rice University leads research to find the best nanofluid for heat transfer

Houston, TX | Posted on March 31st, 2014

Rice scientists mixed very low concentrations of diamond particles (about 6 nanometers in diameter) with mineral oil to test the nanofluid's thermal conductivity and how temperature would affect its viscosity. They found it to be much better than nanofluids that contain higher amounts of oxide, nitride or carbide ceramics, metals, semiconductors, carbon nanotubes and other composite materials.

The Rice results appeared this month in the American Chemical Society journal Applied Materials and Interfaces.

The work that could improve applications where control of heat is paramount was led by Pulickel Ajayan, chair of Rice's new Materials Science and NanoEngineering Department, and Rice alumnus Jaime Taha-Tijerina, now a research scientist at Viakable Technology and Research Center in Monterrey, Mexico, and a research collaborator at Carbon Sponge Solutions in Houston.

Thermal fluids are used to alleviate wear on components and tools and for machining operations like stamping and drilling, medical therapy and diagnosis, biopharmaceuticals, air conditioning, fuel cells, power transmission systems, solar cells, micro- and nanoelectronic mechanical systems and cooling systems for everything from engines to nuclear reactors.

Fluids for each application have to balance an ability to flow with thermal transport properties. Thin fluids like water and ethylene glycol flow easily but don't conduct heat well, while traditional heat-transfer fluids can be affected by stability, viscosity, surface charge, layering, agglomeration and other factors that limit essential flow.

Researchers have been looking since the late 1990s for efficient, customizable nanofluids that offer a middle ground. They use sub-100 nanometer particles in low-enough concentrations that they don't limit flow but still make efficient use of their heat-transfer and storage properties.

Nanodiamonds are proving to be the best additive yet. They carry most of the properties that make bulk diamond so outstanding for heat-transfer applications at the macro scale. Single diamond crystals can be 100 times better at thermal conductivity than copper while still acting as an efficient lubricant.

"The great properties of nanodiamond -- lubricity, high thermal conductivity and electrical resistivity and stability, among others -- are quite impressive," said Taha-Tijerina. "We found we could combine very small amounts with conventional fluids and get extraordinary thermal transport without significant problems in viscosity."

In tests, the researchers dispersed nanodiamonds in mineral oil and found that a very small concentration -- one-tenth of a percent by weight - raised the thermal conductivity of the oil by 70 percent at 373 kelvins (about 211 degrees Fahrenheit). The same concentration of nanodiamond at a lower temperature still raised the conductivity, but to lesser effect (about 40 percent at 323 K).

They suggested a mechanism somewhat like percolation - but perhaps unlike anything else yet seen -- takes hold as oil and diamond molecules collide when heated.

"Brownian motion and nanoparticle/fluid interactions play an important role," Taha-Tijerina said. "We observed enhancement in thermal conductivity with incremental changes in temperature and the amount of nanodiamonds used. The temperature-dependent variations told us the changes were due not just to the percolation mechanism but also to Brownian motion."

Co-authors are former Rice postdoctoral researcher Tharangattu Narayanan, now at the CSIR-Central Electrochemical Research Institute, Karaikundi, India; Chandra Sekhar Tiwary, who has a research appointment at Rice and is a scientist at the Indian Institute of Science, Bangalore, India; and Rice alumna Karen Lozano, a professor of mechanical engineering, and Mircea Chipara, an assistant professor of physics and geology, both of the University of Texas Pan American, Edinburg, Texas. Ajayan is Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry.

Mexico's National Council for Science and Technology and the Army Research Office through the Multidisciplinary University Research Initiative supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is 6.3-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Ajayan Research Group:

Rice Materials Science and NanoEngineering Department:

Related News Press

News and information

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Nanotubes/Buckyballs/Fullerenes

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Discoveries

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Materials/Metamaterials

Chemical cages: New technique advances synthetic biology February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

Making sense of metallic glass February 9th, 2016

Graphene decharging and molecular shielding February 8th, 2016

Announcements

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Military

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

Research partnerships

Chemical cages: New technique advances synthetic biology February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic