Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Diamonds are an oil's best friend: Rice University leads research to find the best nanofluid for heat transfer

Nanodiamonds smaller than 6 nanometers across have proven to be an effective additive to mineral oil for thermal-transfer and storage applications, according to researchers at Rice University. The electron microscope image shows diamond nanoparticles suspended in oil. The inset shows the diffraction planes of the particles.Credit: Ajayan Group/Rice University
Nanodiamonds smaller than 6 nanometers across have proven to be an effective additive to mineral oil for thermal-transfer and storage applications, according to researchers at Rice University. The electron microscope image shows diamond nanoparticles suspended in oil. The inset shows the diffraction planes of the particles.

Credit: Ajayan Group/Rice University

Abstract:
A mixture of diamond nanoparticles and mineral oil easily outperforms other types of fluid created for heat-transfer applications, according to new research by Rice University.

Diamonds are an oil's best friend: Rice University leads research to find the best nanofluid for heat transfer

Houston, TX | Posted on March 31st, 2014

Rice scientists mixed very low concentrations of diamond particles (about 6 nanometers in diameter) with mineral oil to test the nanofluid's thermal conductivity and how temperature would affect its viscosity. They found it to be much better than nanofluids that contain higher amounts of oxide, nitride or carbide ceramics, metals, semiconductors, carbon nanotubes and other composite materials.

The Rice results appeared this month in the American Chemical Society journal Applied Materials and Interfaces.

The work that could improve applications where control of heat is paramount was led by Pulickel Ajayan, chair of Rice's new Materials Science and NanoEngineering Department, and Rice alumnus Jaime Taha-Tijerina, now a research scientist at Viakable Technology and Research Center in Monterrey, Mexico, and a research collaborator at Carbon Sponge Solutions in Houston.

Thermal fluids are used to alleviate wear on components and tools and for machining operations like stamping and drilling, medical therapy and diagnosis, biopharmaceuticals, air conditioning, fuel cells, power transmission systems, solar cells, micro- and nanoelectronic mechanical systems and cooling systems for everything from engines to nuclear reactors.

Fluids for each application have to balance an ability to flow with thermal transport properties. Thin fluids like water and ethylene glycol flow easily but don't conduct heat well, while traditional heat-transfer fluids can be affected by stability, viscosity, surface charge, layering, agglomeration and other factors that limit essential flow.

Researchers have been looking since the late 1990s for efficient, customizable nanofluids that offer a middle ground. They use sub-100 nanometer particles in low-enough concentrations that they don't limit flow but still make efficient use of their heat-transfer and storage properties.

Nanodiamonds are proving to be the best additive yet. They carry most of the properties that make bulk diamond so outstanding for heat-transfer applications at the macro scale. Single diamond crystals can be 100 times better at thermal conductivity than copper while still acting as an efficient lubricant.

"The great properties of nanodiamond -- lubricity, high thermal conductivity and electrical resistivity and stability, among others -- are quite impressive," said Taha-Tijerina. "We found we could combine very small amounts with conventional fluids and get extraordinary thermal transport without significant problems in viscosity."

In tests, the researchers dispersed nanodiamonds in mineral oil and found that a very small concentration -- one-tenth of a percent by weight - raised the thermal conductivity of the oil by 70 percent at 373 kelvins (about 211 degrees Fahrenheit). The same concentration of nanodiamond at a lower temperature still raised the conductivity, but to lesser effect (about 40 percent at 323 K).

They suggested a mechanism somewhat like percolation - but perhaps unlike anything else yet seen -- takes hold as oil and diamond molecules collide when heated.

"Brownian motion and nanoparticle/fluid interactions play an important role," Taha-Tijerina said. "We observed enhancement in thermal conductivity with incremental changes in temperature and the amount of nanodiamonds used. The temperature-dependent variations told us the changes were due not just to the percolation mechanism but also to Brownian motion."

Co-authors are former Rice postdoctoral researcher Tharangattu Narayanan, now at the CSIR-Central Electrochemical Research Institute, Karaikundi, India; Chandra Sekhar Tiwary, who has a research appointment at Rice and is a scientist at the Indian Institute of Science, Bangalore, India; and Rice alumna Karen Lozano, a professor of mechanical engineering, and Mircea Chipara, an assistant professor of physics and geology, both of the University of Texas Pan American, Edinburg, Texas. Ajayan is Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry.

Mexico's National Council for Science and Technology and the Army Research Office through the Multidisciplinary University Research Initiative supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is 6.3-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Ajayan Research Group:

Rice Materials Science and NanoEngineering Department:

Related News Press

News and information

International research partnership tricks the light fantastic March 2nd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

Nanotubes/Buckyballs

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

Discoveries

Breakthrough in OLED technology March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Materials/Metamaterials

Breakthrough in OLED technology March 2nd, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Announcements

International research partnership tricks the light fantastic March 2nd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Breakthrough in OLED technology March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Military

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Simulating superconducting materials with ultracold atoms: Rice physicists build superconductor analog, observe antiferromagnetic order February 23rd, 2015

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

New nanogel for drug delivery: Self-healing gel can be injected into the body and act as a long-term drug depot February 19th, 2015

Research partnerships

Breakthrough in OLED technology March 2nd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE