Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Plasma tool for destroying cancer cells: Inducing biological tissue damage with an atmospheric pressure plasma source could open the door to many applications in medicine

Abstract:
Plasma medicine is a new and rapidly developing area of medical technology. Specifically, understanding the interaction of so-called atmospheric pressure plasma jets with biological tissues could help to use them in medical practice. Under the supervision of Sylwia Ptasinska from the University of Notre Dame, in Indiana, USA, Xu Han and colleagues conducted a quantitative and qualitative study of the different types of DNA damage induced by atmospheric pressure plasma exposure, the paper is published in EPJ D as part of a special issue on nanoscale insights into Ion Beam Cancer Therapy. This approach, they hope, could ultimately lead to devising alternative tools for cancer therapy as well as applications in hospital hygiene, dental care, skin diseases, antifungal care, chronic wounds and cosmetics treatments.

Plasma tool for destroying cancer cells: Inducing biological tissue damage with an atmospheric pressure plasma source could open the door to many applications in medicine

Heidelberg, Germany | Posted on March 26th, 2014

To investigate the DNA damage from the so-called non-thermal Atmospheric Pressure Plasma Jet (APPJ), the team adopted a common technique used in biochemistry, called agarose gel electrophoresis. They studied the nature and level of DNA damage by plasma species, so-called reactive radicals, under two different conditions of the helium plasma source with different parameters of electric pulses.

They also identified the effect of water on DNA damage. To do so, they examined the role of reactive radicals involved in DNA damage processes occurring in an aqueous environment. They then compared them to previous results obtained in dry DNA samples.

The next step would involve investigating plasma made from helium mixtures with different molecular ratios of other gases, such as oxygen, nitrous oxide, carbon dioxide and steam, under different plasma source conditions. The addition of another gas is expected to increase the level of radical species, such as reactive oxygen species and reactive nitrogen species, known to produce severe DNA damage. These could, ultimately, help to destroy cancerous tumour cells.

Full bibliographic information

X.Han, W. A. Cantrell, E. E. Escobar and S. Ptasinska (2014), Plasmid DNA damage induced by induced by Helium Atmospheric Pressure Plasma Jet, European Physical Journal D, DOI 10.1140/epjd/e2014-40753-y

For more information visit: www.epj.org

####

About Springer Science+Business Media
Springer Science+Business Media (www.springer.com) is a leading global scientific publisher, providing researchers in academia, scientific institutions and corporate R&D departments with quality content via innovative information products and services. Springer is also a trusted local-language publisher in Europe – especially in Germany and the Netherlands – primarily for physicians and professionals working in the automotive, transport and healthcare sectors. Roughly 2,000 journals and more than 7,000 new books are published by Springer each year, and the group is home to the world’s largest STM eBook collection, as well as the most comprehensive portfolio of open access journals. Springer employs nearly 6,200 individuals across the globe and in 2011 generated sales of approximately EUR 875 million.

For more information, please click here

Contacts:
Joan Robinson
+49-6221-487-8130


Saskia Rohmer
tel. +49 6221 4878414

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

HTA to Present European Strategy for Competitive Micro- and Nanotechnologies & Smart Systems: Special Event in Brussels on April 24 Gathers Research Institutes’ CEOs, European Commissioners and Key European Industrials April 17th, 2018

Nanomedicine

Nanobiotix Shows NBTXR3 Nanoparticles Can Stoke Anti-Tumor Immune Response April 17th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Bloodless revolution in diabetes monitoring: Scientists have created a non-invasive, adhesive patch, which promises the measurement of glucose levels through the skin without a finger-prick blood test April 10th, 2018

Twisting laser light offers the chance to probe the nano-scale: A new method to sensitively measure the structure of molecules has been demonstrated by twisting laser light and aiming it at miniscule gold gratings to separate out wavelengths: April 5th, 2018

Discoveries

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

One string to rule them all April 17th, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

Announcements

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

HTA to Present European Strategy for Competitive Micro- and Nanotechnologies & Smart Systems: Special Event in Brussels on April 24 Gathers Research Institutes’ CEOs, European Commissioners and Key European Industrials April 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

One string to rule them all April 17th, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

Dental

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

New technology can detect tiny ovarian tumors: 'Synthetic biomarkers' could be used to diagnose ovarian cancer months earlier than now possible April 10th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Nanocellulose in medicine and green manufacturing: American University professor develops method to improve performance of cellulose nanocrystals November 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project