Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Martini Tech Inc. Starts to Offer GaN Deposition Service by MOCVD

Abstract:
Martini Tech has started to offer its customers a new GaN deposition service on sapphire substrates by MOCVD (metalorganic chemical vapour deposition) for LED (light emitting diode) applications.

Martini Tech Inc. Starts to Offer GaN Deposition Service by MOCVD

Tokyo, Japan | Posted on March 25th, 2014

Martini Tech has started to offer its customers a new GaN deposition service on sapphire substrates by MOCVD (metalorganic chemical vapour deposition) for LED (light emitting diode) applications.

Light emitting diodes are becoming increasingly popular in various fields of the electronics industry: they can be used inside digital clocks, for street illumination applications, to send information and in large-size television screens and computer monitors.

LEDs are similar to incandescent light bulbs but they differ from them as they do not have a filament and therefore they do not get particularly hot and do not become unusable after a certain period of time due to filament burn out.

Differently from incandescent light bulbs, LEDs are illuminated uniquely by the movement of the electrons in a semiconductor material.

Such important characteristics, coupled with electricity consumption which is lower than that of incandescent light bulbs make them viable as their potential replacement.
Widespread adoption of LEDs has so far being hindered by a series of factors, the main ones being the relatively high price and lower light output compared with traditional incandescent light bulbs.

GaN deposition is one of the most promising techniques to improve the light output of LEDs and involves the deposition of a thin GaN epitaxial layer on a patterned sapphire substrate (PSS).

The service offered includes the deposition by metalorganic chemical vapour deposition of undoped GaN and of n- or p- doped GaN for high-quality highly-ordered crystalline layers up to 5μm of thickness.

####

About Martini Tech Inc.
Martini Tech Inc. is a company founded in 2013 and based in Tokyo, Japan.

The company offers a whole range of services for microfabrication: MEMS design and development, MEMS foundry, sapphire wafer patterning, nanoimprint mold manufacturing using a wide range of materials such as silicon, nickel and quartz, nanoimprint replica on film, GaN on PSS deposition by MOCVD and sputtering deposition services with more than 120 different materials available.

For more information, please click here

Contacts:
Mr. Matteo Martini
Martini Tech Inc.
Tokyo-to Chuo-ku
Ginza 2-12-12
Tachibanaya Bldg.
3rd floor
104-0061 Japan
Tel. +81-80-6626-2790

Copyright © Martini Tech Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosun’s ALD solutions enable novel high-speed memories June 27th, 2017

Display technology/LEDs/SS Lighting/OLEDs

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction May 5th, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

MEMS

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

Announcements

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosun’s ALD solutions enable novel high-speed memories June 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project