Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists develop world’s first light-activated antimicrobial surface that also works in the dark

Samples of silicone with the various dyes infused
Samples of silicone with the various dyes infused

Abstract:
Researchers at UCL have developed a new antibacterial material which has potential for cutting hospital acquired infections. The combination of two simple dyes with nanoscopic particles of gold is deadly to bacteria when activated by light - even under modest indoor lighting. And in a first for this type of substance, it also shows impressive antibacterial properties in total darkness.

Scientists develop world’s first light-activated antimicrobial surface that also works in the dark

London, UK | Posted on March 24th, 2014

The research, from by Sacha Noimark and Ivan Parkin (both UCL Chemistry) and Elaine Allan (UCL Eastman Dental Institute), is published today in the journal Chemical Science.

Hospital-acquired infections are a major issue for modern medicine, with pathogens like methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium difficile (C. diff) getting extensive publicity. Although medical establishments have stringent cleaning policies, insist on frequent hand-washing by staff, and have powerful drugs at their disposal, it is difficult to eliminate these infections unless you can make the hospital environment more hostile to microbes. Surfaces, such as door handles, medical equipment, keyboards, pens and so on are an easy route for germs to spread, even onto freshly-cleaned hands.

One possible solution to this is to develop alternative strategies such as antibacterial coatings that make surfaces less accommodating to germs. These surfaces are not like antibacterial fluids that just wash away - the goal is to make a surface which is intrinsically deadly to harmful bacteria.

"There are certain dyes that are known to be harmful to bacteria when subjected to bright light," explains the study's corresponding author Ivan Parkin (Head of UCL Chemistry). "The light excites electrons in them, promoting the dye molecules to an excited triplet state and ultimately produces highly reactive oxygen radicals that damage bacteria cell walls. Our project tested new combinations of these dyes along with gold nanoparticles, and simplified ways of treating surfaces which could make the technology easier and cheaper to roll out."

The team, tested several different combinations of the dyes crystal violet (already used to treat staph infections), methylene blue and nanogold, deposited on the surface of silicone. This flexible rubbery substance is widely used as a sealant, a coating and to build medical apparatus such as tubes, catheters and gaskets, and can also be used as protective casings for things like keyboards and telephones.

While work to create antimicrobial surfaces in the past has often concentrated on complex ways of bonding dyes to the surface, this study took a simpler approach. The researchers used an organic solvent to swell the silicone, allowing the methylene blue and gold nanoparticles to diffuse through the polymer. They then dipped the silicone into a crystal violet solution to form a thin dye layer at the polymer surface.

In their tests, in which infected surfaces were subjected to light levels similar to those measured in hospital buildings, surfaces treated with a combination of crystal violet, methylene blue and nanogold showed the most potent bactericidal effect ever observed in such a surface. Moreover, the treatment did not significantly change the properties of the silicone (for instance, how water repellent it is), and the coating was not affected by rubbing with alcohol wipes, meaning it can stand up to the repeated cleaning that goes on in hospitals, without being worn off.

"Despite contaminating the surface with far more bacteria than you would ever see in a hospital setting, placed under a normal fluorescent light bulb, the entire sample was dead in three to six hours, depending on the type of bacteria," says the paper's lead author, Sacha Noimark. "That was an excellent result, but the bigger surprise was the sample which we left in the dark. That sample too showed significant reductions in bacterial load, albeit over longer timescales of about three to eighteen hours. The precise mechanism by which this dark-kill works is not yet clear, though."

This is the first time a light-activated antimicrobial surface has had any kind of effect in the dark. This, along with its unprecedented performance under hospital lighting conditions, and relatively simple and cost-effective manufacture, means that the technology is extremely promising for future applications.

The team have been granted a patent on the formulation. The work was sponsored through the UCL M3S engineering doctorate centre and co-funded by Ondine Biopharma.

####

For more information, please click here

Contacts:
Oli Usher

020-767-97964

Copyright © University College London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

UCL Chemistry:

UCL Eastman Dental Institute:

Full paper available in Chemical Science (£):

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Food/Agriculture/Supplements

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Dental

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Innovations in dentistry: Navigational surgery, robotics, and nanotechnology October 2nd, 2020

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Gas storage method could help next-generation clean energy vehicles: Tremendous amounts of hydrogen and methane can be stored in nanoscopic pores April 17th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project