Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Scientists develop world’s first light-activated antimicrobial surface that also works in the dark

Samples of silicone with the various dyes infused
Samples of silicone with the various dyes infused

Abstract:
Researchers at UCL have developed a new antibacterial material which has potential for cutting hospital acquired infections. The combination of two simple dyes with nanoscopic particles of gold is deadly to bacteria when activated by light - even under modest indoor lighting. And in a first for this type of substance, it also shows impressive antibacterial properties in total darkness.

Scientists develop world’s first light-activated antimicrobial surface that also works in the dark

London, UK | Posted on March 24th, 2014

The research, from by Sacha Noimark and Ivan Parkin (both UCL Chemistry) and Elaine Allan (UCL Eastman Dental Institute), is published today in the journal Chemical Science.

Hospital-acquired infections are a major issue for modern medicine, with pathogens like methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium difficile (C. diff) getting extensive publicity. Although medical establishments have stringent cleaning policies, insist on frequent hand-washing by staff, and have powerful drugs at their disposal, it is difficult to eliminate these infections unless you can make the hospital environment more hostile to microbes. Surfaces, such as door handles, medical equipment, keyboards, pens and so on are an easy route for germs to spread, even onto freshly-cleaned hands.

One possible solution to this is to develop alternative strategies such as antibacterial coatings that make surfaces less accommodating to germs. These surfaces are not like antibacterial fluids that just wash away - the goal is to make a surface which is intrinsically deadly to harmful bacteria.

"There are certain dyes that are known to be harmful to bacteria when subjected to bright light," explains the study's corresponding author Ivan Parkin (Head of UCL Chemistry). "The light excites electrons in them, promoting the dye molecules to an excited triplet state and ultimately produces highly reactive oxygen radicals that damage bacteria cell walls. Our project tested new combinations of these dyes along with gold nanoparticles, and simplified ways of treating surfaces which could make the technology easier and cheaper to roll out."

The team, tested several different combinations of the dyes crystal violet (already used to treat staph infections), methylene blue and nanogold, deposited on the surface of silicone. This flexible rubbery substance is widely used as a sealant, a coating and to build medical apparatus such as tubes, catheters and gaskets, and can also be used as protective casings for things like keyboards and telephones.

While work to create antimicrobial surfaces in the past has often concentrated on complex ways of bonding dyes to the surface, this study took a simpler approach. The researchers used an organic solvent to swell the silicone, allowing the methylene blue and gold nanoparticles to diffuse through the polymer. They then dipped the silicone into a crystal violet solution to form a thin dye layer at the polymer surface.

In their tests, in which infected surfaces were subjected to light levels similar to those measured in hospital buildings, surfaces treated with a combination of crystal violet, methylene blue and nanogold showed the most potent bactericidal effect ever observed in such a surface. Moreover, the treatment did not significantly change the properties of the silicone (for instance, how water repellent it is), and the coating was not affected by rubbing with alcohol wipes, meaning it can stand up to the repeated cleaning that goes on in hospitals, without being worn off.

"Despite contaminating the surface with far more bacteria than you would ever see in a hospital setting, placed under a normal fluorescent light bulb, the entire sample was dead in three to six hours, depending on the type of bacteria," says the paper's lead author, Sacha Noimark. "That was an excellent result, but the bigger surprise was the sample which we left in the dark. That sample too showed significant reductions in bacterial load, albeit over longer timescales of about three to eighteen hours. The precise mechanism by which this dark-kill works is not yet clear, though."

This is the first time a light-activated antimicrobial surface has had any kind of effect in the dark. This, along with its unprecedented performance under hospital lighting conditions, and relatively simple and cost-effective manufacture, means that the technology is extremely promising for future applications.

The team have been granted a patent on the formulation. The work was sponsored through the UCL M3S engineering doctorate centre and co-funded by Ondine Biopharma.

####

For more information, please click here

Contacts:
Oli Usher

020-767-97964

Copyright © University College London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

UCL Chemistry:

UCL Eastman Dental Institute:

Full paper available in Chemical Science (£):

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Nanomedicine

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Discoveries

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Food/Agriculture/Supplements

Nanoparticles Display Ability to Improve Efficiency of Filters October 28th, 2014

Smallest world record has 'endless possibilities' for bio-nanotechnology October 8th, 2014

Simple Detection of Toxic Compounds in Dairy Products October 6th, 2014

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Research partnerships

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

New evidence for an exotic, predicted superconducting state October 27th, 2014

Dental

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

Diagnostic tool for therapeutic plasma medicine September 8th, 2014

New Powder Nanocomposite Miracle in Bone Recovery May 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE