Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers Grow Carbon Nanofibers Using Ambient Air, Without Toxic Ammonia

Researchers have shown they can grow vertically-aligned carbon nanofibers using ambient air, rather than ammonia gas. Click to enlarge image.Credit: Anatoli Melechko.
Researchers have shown they can grow vertically-aligned carbon nanofibers using ambient air, rather than ammonia gas. Click to enlarge image.

Credit: Anatoli Melechko.

Abstract:
"Aerosynthesis: Growth of Vertically-aligned Carbon Nanofibres with Air DC Plasma"

Authors: A. Kodumagulla, V. Varanasi, R.C. Pearce, W.C. Wu, J.B. Tracy, and A.V. Melechko, North Carolina State University; D.K. Hensley and T.E. McKnight, Oak Ridge National Laboratory

Published: March 12, 2014, Nanomaterials and Nanotechnology

DOI: 10.5772/58449

Abstract: Vertically-aligned carbon nanofibres (VACNFs) have been synthesized in a mixture of acetone and air using catalytic DC plasma-enhanced chemical vapour deposition. Typically, ammonia or hydrogen is used as an etchant gas in the mixture to remove carbon that otherwise passivates the catalyst surface and impedes growth. Our demonstration of the use of air as the etchant gas opens up the possibility that ion etching could be sufficient to maintain the catalytic activity state during synthesis. It also demonstrates a path toward growing VACNFs in the open atmosphere.

Researchers Grow Carbon Nanofibers Using Ambient Air, Without Toxic Ammonia

Raleigh, NC | Posted on March 24th, 2014

Researchers from North Carolina State University have demonstrated that vertically aligned carbon nanofibers (VACNFs) can be manufactured using ambient air, making the manufacturing process safer and less expensive. VACNFs hold promise for use in gene-delivery tools, sensors, batteries and other technologies.

Conventional techniques for creating VACNFs rely on the use of ammonia gas, which is toxic. And while ammonia gas is not expensive, it's not free.

"This discovery makes VACNF manufacture safer and cheaper, because you don't need to account for the risks and costs associated with ammonia gas," says Dr. Anatoli Melechko, an adjunct associate professor of materials science and engineering at NC State and senior author of a paper on the work. "This also raises the possibility of growing VACNFs on a much larger scale."

In the most common method for VACNF manufacture, a substrate coated with nickel nanoparticles is placed in a vacuum chamber and heated to 700 degrees Celsius. The chamber is then filled with ammonia gas and either acetylene or acetone gas, which contain carbon. When a voltage is applied to the substrate and a corresponding anode in the chamber, the gas is ionized. This creates plasma that directs the nanofiber growth. The nickel nanoparticles free carbon atoms, which begin forming VACNFs beneath the nickel catalyst nanoparticles. However, if too much carbon forms on the nanoparticles it can pile up and clog the passage of carbon atoms to the growing nanofibers.

Ammonia's role in this process is to keep carbon from forming a crust on the nanoparticles, which would prevent the formation of VACNFs.

"We didn't think we could grow VACNFs without ammonia or a hydrogen gas," Melechko says. But he tried anyway.

Melechko's team tried the conventional vacuum technique, using acetone gas. However, they replaced the ammonia gas with ambient air - and it worked. The size, shape and alignment of the VACNFs were consistent with the VACNFs produced using conventional techniques.

"We did this using the vacuum technique without ammonia," Melechko says. "But it creates the theoretical possibility of growing VACNFs without a vacuum chamber. If that can be done, you would be able to create VACNFs on a much larger scale."

Melechko also highlights the role of two high school students involved in the work: A. Kodumagulla and V. Varanasi, who are lead authors of the paper. "This discovery would not have happened if not for their approach to the problem, which was free from any preconceptions," Melechko says. "I think they're future materials engineers."

####

For more information, please click here

Contacts:
Matt Shipman

919-515-6386

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Aerosynthesis: Growth of Vertically-aligned Carbon Nanofibres with Air DC Plasma,” is published online in Nanomaterials and Nanotechnology. Co-authors include former NC State Ph.D. student Dr. R.C. Pearce; NC State Ph.D. student W.C. Wu; Dr. Joseph Tracy, an associate professor of materials science and engineering at NC State; and D.K. Hensley and T.E. McKnight of Oak Ridge National Laboratory. The work was partially supported by National Science Foundation grant DMR-1056653:

Related News Press

News and information

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Chemistry

Chemical cages: New technique advances synthetic biology February 10th, 2016

Govt.-Legislation/Regulation/Funding/Policy

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Nanotubes/Buckyballs/Fullerenes

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Nanomedicine

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Sensors

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Nanosheet growth technique could revolutionize nanomaterial production February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NBC LEARN DEBUTS SIX-PART VIDEO SERIES, “NANOTECHNOLOGY: SUPER SMALL SCIENCE” Produced by NBC Learn in partnership with the National Science Foundation, and narrated by NBC News/MSNBC’s Kate Snow, series highlights leading research in nanotechnology January 25th, 2016

Discoveries

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Materials/Metamaterials

Chemical cages: New technique advances synthetic biology February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

Making sense of metallic glass February 9th, 2016

A fast solidification process makes material crackle February 8th, 2016

Announcements

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Canadian physicists discover new properties of superconductivity February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic