Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Advantages emerge in using nanostructured material in the forging process of mechanical components

Abstract:
In his PhD thesis, the Industrial Engineer Daniel Salcedo-Perez has studied the process to forge mechanical components using nanostructured material. Specifically, he has been able to produce matrices to forge a set of mechanical parts like cogs and gears. "These functional nanostructured components have been produced free of faults, and this is something that had not been done previously," he pointed out. In his research conducted at the NUP/UPNA-Public University of Navarre, he focussed on the isothermal forge that uses temperatures higher than those of conventional forges. "Among the advantages observed," he points out in his conclusions, "we can point to better temperature control during the process, enhanced mechanical properties of the forged parts, and lower energy expenditure, because the preforms have to be heated to a lower temperature."

Advantages emerge in using nanostructured material in the forging process of mechanical components

Usurbil, Spain | Posted on February 28th, 2014

In the development of the research he also conducted a comparative study on the conventional forging process in order to obtain mechanical elements with a submicrometric and/or nanometric structure. "In each component produced the optimum forging conditions (temperature, heat treatments) were determined by analysing the microhardness and the microstructure," he explained.

His research made it possible to verify that the microhardness of forged mechanical components using predeformed material, "is much higher than in those produced from annealed material, and it was possible to achieve hardness increases of between 50% and 70% in the various mechanical components made, in contrast to the starting material in an annealed state." In this respect, there was also confirmation of an improvement in malleability and in the mechanical properties of the components produced in the cases in which isothermal forging was used rather than conventional forging.

Daniel Salcedo has a degree in industrial engineering specialising in mechanical intensification from the NUP/UPNA-Public University of Navarre (2009) and has been awarded a PhD in Materials Engineering and Manufacturing by the same university. He currently works as an assistant lecturer in the NUP/UPNA's Department of Mechanical, Energy and Materials Engineering. He is the author of two patents, in the sphere of his scientific activity he has participated in three research projects funded by public bodies, is the author of seventeen papers in international scientific journals and has participated in about fifteen international conferences.

####

For more information, please click here

Contacts:
Oihane Lakar Iraizoz

34-943-363-040

Victoria Alfonso Seminario
Universidad Pública de Navarra

Contact details:

(+34) 948168457

Copyright © Elhuyar Fundazioa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Internet reference:

Related News Press

News and information

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Molecular Machines

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Micro-bubbles make big impact: Research team develops new ultrasound-powered actuator to develop micro robot November 25th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

Molecular Nanotechnology

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Assembly of nanoparticles proceeds like a zipper: Viruses and nanoparticles can be assembled into processable superlattice wires according to scientists from Aalto University Finland September 25th, 2017

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Discoveries

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project