Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Advantages emerge in using nanostructured material in the forging process of mechanical components

Abstract:
In his PhD thesis, the Industrial Engineer Daniel Salcedo-Perez has studied the process to forge mechanical components using nanostructured material. Specifically, he has been able to produce matrices to forge a set of mechanical parts like cogs and gears. "These functional nanostructured components have been produced free of faults, and this is something that had not been done previously," he pointed out. In his research conducted at the NUP/UPNA-Public University of Navarre, he focussed on the isothermal forge that uses temperatures higher than those of conventional forges. "Among the advantages observed," he points out in his conclusions, "we can point to better temperature control during the process, enhanced mechanical properties of the forged parts, and lower energy expenditure, because the preforms have to be heated to a lower temperature."

Advantages emerge in using nanostructured material in the forging process of mechanical components

Usurbil, Spain | Posted on February 28th, 2014

In the development of the research he also conducted a comparative study on the conventional forging process in order to obtain mechanical elements with a submicrometric and/or nanometric structure. "In each component produced the optimum forging conditions (temperature, heat treatments) were determined by analysing the microhardness and the microstructure," he explained.

His research made it possible to verify that the microhardness of forged mechanical components using predeformed material, "is much higher than in those produced from annealed material, and it was possible to achieve hardness increases of between 50% and 70% in the various mechanical components made, in contrast to the starting material in an annealed state." In this respect, there was also confirmation of an improvement in malleability and in the mechanical properties of the components produced in the cases in which isothermal forging was used rather than conventional forging.

Daniel Salcedo has a degree in industrial engineering specialising in mechanical intensification from the NUP/UPNA-Public University of Navarre (2009) and has been awarded a PhD in Materials Engineering and Manufacturing by the same university. He currently works as an assistant lecturer in the NUP/UPNA's Department of Mechanical, Energy and Materials Engineering. He is the author of two patents, in the sphere of his scientific activity he has participated in three research projects funded by public bodies, is the author of seventeen papers in international scientific journals and has participated in about fifteen international conferences.

####

For more information, please click here

Contacts:
Oihane Lakar Iraizoz

34-943-363-040

Victoria Alfonso Seminario
Universidad Pública de Navarra

Contact details:

(+34) 948168457

Copyright © Elhuyar Fundazioa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Internet reference:

Related News Press

News and information

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Molecular Machines

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

Molecular Nanotechnology

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Going with the flow January 16th, 2015

From the bottom up: Manipulating nanoribbons at the molecular level: Berkeley Lab and UC Berkeley team engineers the shape and properties of nanoscale strips of graphene January 12th, 2015

DNA Origami Could Lead to Nano “Transformers” for Biomedical Applications: Tiny hinges and pistons hint at possible complexity of future nano-robots January 5th, 2015

Discoveries

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Announcements

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE