Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Google Glass could help stop emerging public health threats around the world

A custom Google Glass app reported in ACS Nano could help prevent the spread of disease around the world.

Credit: American Chemical Society
A custom Google Glass app reported in ACS Nano could help prevent the spread of disease around the world.

Credit: American Chemical Society

Abstract:
The much-talked-about Google Glass — the eyewear with computer capabilities — could potentially save lives, especially in isolated or far-flung locations, say scientists. They are reporting development of a Google Glass app that takes a picture of a diagnostic test strip and sends the data to computers, which then rapidly beam back a diagnostic report to the user. The information also could help researchers track the spread of diseases around the world. The study appears in the journal ACS Nano, a publication of the American Chemical Society, the world's largest scientific society.

Google Glass could help stop emerging public health threats around the world

Washington, DC | Posted on February 27th, 2014

"It's very important to detect emerging public health threats early, before an epidemic arises and many lives are lost," says Aydogan Ozcan, Ph.D. "With our app for Google Glass and our remote computing and data analysis power, we can deliver a one-two punch — provide quantified biomedical test results for individual patients, plus analyze all those data to determine whether an outbreak is imminent."

Google Glass looks like a pair of eyeglasses without the lenses, but with a small rectangular transparent screen near the right eye that functions as a tiny computer screen. A mouse is built into the right arm of the frame.

Ozcan and colleagues at the University of California, Los Angeles, designed a custom app for Google Glass. The app uses Glass' built-in camera to take a picture of a diagnostic test, called a lateral flow immunochromatographic assay. A familiar example of such an assay is a home pregnancy test.

The wearable computer transmits images of these test strips with their custom-created Quick-Response (known as "QR") code identifiers to more powerful computers in other parts of the world for analysis. Then, a quantified diagnostic result is beamed back to the Google Glass user. If the user is in a remote area without Wi-Fi, then he or she can connect Glass to a smartphone to transmit the data along with geographical information for disease tracking.

In pilot tests, the team successfully used the method with HIV and prostate-specific antigen (known as "PSA") assays. Results were available within eight seconds for each individual test. They could even take a picture of several test strips next to each other in one image and come up with the correct diagnoses.

Other medical diagnostic devices based on smartphone technology, including one recently developed by Ozcan's team, require additional equipment to be attached to the device. Or they require extensive handling of the device and the tests. But the researchers note that their Google Glass set-up works without any external hardware attachments. It is also hands-free, allowing busy technicians to quickly go through many patient tests in a short period.

The researchers acknowledge funding from the Presidential Early Career Award for Scientists and Engineers, the U.S. Army Research Office, the National Science Foundation, the Office of Naval Research and the National Institutes of Health.

To obtain a PDF of the paper, please contact .

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 161,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Michael Bernstein
202-872-6042


Katie Cottingham, Ph.D.
301-775-8455


Aydogan Ozcan, Ph.D.
University of California, Los Angeles
Los Angeles, Calif. 90095
Phone: 310-825-0915

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoelectronics

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Military

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic