Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A New Postal Code for Cancer: Freiburg researchers find purely chemical way to target therapeutic nano-containers to cells

Immunofluorescence image shows nanoparticles targeted to endothelial cells. The red particles turn orange when overlapping with the green caveolin in the lipid rafts of the cells. Source: Julia Voigt / Prasad Shastri
Immunofluorescence image shows nanoparticles targeted to endothelial cells. The red particles turn orange when overlapping with the green caveolin in the lipid rafts of the cells.

Source: Julia Voigt / Prasad Shastri

Abstract:
Scientists have discovered that a polymer can provide a key to get into tumors: Prof. Prasad Shastri, Director of the Institute of Macromolecular Chemistry and core member of the cluster of excellence BIOSS Centre for Biological Signalling Studies at the University of Freiburg, and graduate students Julia Voigt and Jon Christensen have developed a new paradigm to home nanoparticles, containers that measure a few 100 nanometers in size, to endothelial cells.

A New Postal Code for Cancer: Freiburg researchers find purely chemical way to target therapeutic nano-containers to cells

Freiburg, Germany | Posted on February 12th, 2014

Using just charged polymers with the right affinity for cell lipids the team has developed nanoparticles that can recognize specific cell types simply by their chemical properties. "This is a remarkable discovery, as it allows for the first time to target a specific cell type purely through biophysical principles, and without using the traditional ligand-receptor approach" says Prof. Shastri who led the study. Until now researchers placed molecules on nanoparticles that can latch onto proteins on cell surface - called receptors.

These receptors act as an address or a biological postal code. However in tumors these addresses can change rapidly with time. To solve this lack of precision Shastri and team developed particles that are delivered to endothelial cells using a biophysical approach. "This delivery approach does not require a biological postal code for targeting of nanoparticles and is an important step forward in developing nanoparticle based systems for treating cancers" says Julia Voigt the lead author of the paper.

Cancers are very hungry tissues and they need constant nourishment. This is provided through their own supply of blood vessels. "By going after endothelial cells that make up these blood vessels, we can starve the tumor or kill it with one payload" says Jon Christensen who is a co-author on this study and works on tumor metastasis.

Nanoparticles are used to deliver therapeutics in treating cancers. These very small pills, cornerstones of nanomedicine, get injected into the body and reach the tumor cells via the bloodstream. When they find the targeted cells, they need to be eaten so that the drug can act within the cell. This mechanism is called receptor-mediated endocytosis. Shastri and his team looked to develop a new approach that targets a transport process that is dominant in endothelial cells. It turns out that a structure called caveolae is found in large amounts on endothelial cells. Caveolae are "lipid rafts" on the cell membrane and are one of the doors into the endothelial cells. Prof. Shastri and his team discovered that by decorating nano-pills made of lipids with negatively charged polymers, nanoparticles can preferentially enter through this door. "How exactly these charged polymers enable the nanoparticles to unlock this door we are not sure yet, but we feel confident that with further studies this method could usher in a new approach to delivery of drugs in general" says Shastri. This project was funded by supported by INTERREG and the cluster of excellence BIOSS Centre for Biological Signalling Studies.

Full bibliographic information

Julia Voigt, Jon Christensen, V. Prasad Shastri: Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae. PNAS Online Early Edition 2014.

####

About Albert-Ludwigs-Universität Freiburg
The University of Freiburg was founded in 1457 as a classical comprehensive university, making it one of the oldest higher education institutions in Germany. Successful in the Excellence Initiative, the university also boasts an illustrious history with numerous Nobel Prize recipients. Brilliant scholars and creative thinking distinguish it today as a modern top-notch university well equipped for the challenges of the 21st century.

For more information, please click here

Contacts:
Nicolas Scherger


Prof. Dr. V. Prasad Shastri
Institute for Macromolecular Chemistry / BIOSS Centre for Biological Signalling Studies
University of Freiburg
Phone: 0761/203-6268

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project