Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A New Postal Code for Cancer: Freiburg researchers find purely chemical way to target therapeutic nano-containers to cells

Immunofluorescence image shows nanoparticles targeted to endothelial cells. The red particles turn orange when overlapping with the green caveolin in the lipid rafts of the cells. Source: Julia Voigt / Prasad Shastri
Immunofluorescence image shows nanoparticles targeted to endothelial cells. The red particles turn orange when overlapping with the green caveolin in the lipid rafts of the cells.

Source: Julia Voigt / Prasad Shastri

Abstract:
Scientists have discovered that a polymer can provide a key to get into tumors: Prof. Prasad Shastri, Director of the Institute of Macromolecular Chemistry and core member of the cluster of excellence BIOSS Centre for Biological Signalling Studies at the University of Freiburg, and graduate students Julia Voigt and Jon Christensen have developed a new paradigm to home nanoparticles, containers that measure a few 100 nanometers in size, to endothelial cells.

A New Postal Code for Cancer: Freiburg researchers find purely chemical way to target therapeutic nano-containers to cells

Freiburg, Germany | Posted on February 12th, 2014

Using just charged polymers with the right affinity for cell lipids the team has developed nanoparticles that can recognize specific cell types simply by their chemical properties. "This is a remarkable discovery, as it allows for the first time to target a specific cell type purely through biophysical principles, and without using the traditional ligand-receptor approach" says Prof. Shastri who led the study. Until now researchers placed molecules on nanoparticles that can latch onto proteins on cell surface - called receptors.

These receptors act as an address or a biological postal code. However in tumors these addresses can change rapidly with time. To solve this lack of precision Shastri and team developed particles that are delivered to endothelial cells using a biophysical approach. "This delivery approach does not require a biological postal code for targeting of nanoparticles and is an important step forward in developing nanoparticle based systems for treating cancers" says Julia Voigt the lead author of the paper.

Cancers are very hungry tissues and they need constant nourishment. This is provided through their own supply of blood vessels. "By going after endothelial cells that make up these blood vessels, we can starve the tumor or kill it with one payload" says Jon Christensen who is a co-author on this study and works on tumor metastasis.

Nanoparticles are used to deliver therapeutics in treating cancers. These very small pills, cornerstones of nanomedicine, get injected into the body and reach the tumor cells via the bloodstream. When they find the targeted cells, they need to be eaten so that the drug can act within the cell. This mechanism is called receptor-mediated endocytosis. Shastri and his team looked to develop a new approach that targets a transport process that is dominant in endothelial cells. It turns out that a structure called caveolae is found in large amounts on endothelial cells. Caveolae are "lipid rafts" on the cell membrane and are one of the doors into the endothelial cells. Prof. Shastri and his team discovered that by decorating nano-pills made of lipids with negatively charged polymers, nanoparticles can preferentially enter through this door. "How exactly these charged polymers enable the nanoparticles to unlock this door we are not sure yet, but we feel confident that with further studies this method could usher in a new approach to delivery of drugs in general" says Shastri. This project was funded by supported by INTERREG and the cluster of excellence BIOSS Centre for Biological Signalling Studies.

Full bibliographic information

Julia Voigt, Jon Christensen, V. Prasad Shastri: Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae. PNAS Online Early Edition 2014.

####

About Albert-Ludwigs-Universität Freiburg
The University of Freiburg was founded in 1457 as a classical comprehensive university, making it one of the oldest higher education institutions in Germany. Successful in the Excellence Initiative, the university also boasts an illustrious history with numerous Nobel Prize recipients. Brilliant scholars and creative thinking distinguish it today as a modern top-notch university well equipped for the challenges of the 21st century.

For more information, please click here

Contacts:
Nicolas Scherger


Prof. Dr. V. Prasad Shastri
Institute for Macromolecular Chemistry / BIOSS Centre for Biological Signalling Studies
University of Freiburg
Phone: 0761/203-6268

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Imaging

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Spectral Surface Mapping with Microscopic Resolution: CRAIC Technologies introduces Spectral Surface Mapping™ (S2M™) software November 18th, 2014

Two sensors in one: Nanoparticles that enable both MRI and fluorescent imaging could monitor cancer, other diseases November 18th, 2014

Nanomedicine

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

Discoveries

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Tools

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Nanometrics Announces Upcoming Investor Events November 19th, 2014

Two sensors in one: Nanoparticles that enable both MRI and fluorescent imaging could monitor cancer, other diseases November 18th, 2014

Field-emission plug-and-play solution for microwave electron guns: To simplify the electron emission mechanism involved in microwave electron guns, a team of researchers has created and demonstrated a field-emission plug-and-play solution based on ultrananocrystalline diamond November 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE