Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Shining a light on tiny polymer shapes: Visiting graduate student studies high-throughput manufacturing of precisely shaped microparticles

Shown here are examples of micro shapes polymerized by ultraviolet light in polyethylene glycol diacrylate (PEG-DA).
Image courtesy of Ryan Oliver/Mechanosynthesis Group
Shown here are examples of micro shapes polymerized by ultraviolet light in polyethylene glycol diacrylate (PEG-DA).

Image courtesy of Ryan Oliver/Mechanosynthesis Group

Abstract:
Ryan Oliver, a visiting graduate student in the lab of associate professor of mechanical engineering A. John Hart, is developing a technique called maskless fluidic lithography that creates unique shapes in a liquid polymer by exposing it to patterned ultraviolet light, a process known as photopolymerization.

Shining a light on tiny polymer shapes: Visiting graduate student studies high-throughput manufacturing of precisely shaped microparticles

Cambridge, MA | Posted on February 11th, 2014

For example, Oliver uses a projector to pattern shapes in polyethylene glycol diacrylate (PEG-DA), a common biocompatible polymer. Unlike semiconductor processing, which uses wafer masks produced as single-use items, the integrated projection system allows for rapid change of the pattern.

Key to the system is a Texas Instruments digital micromirror device (DMD) that can turn micromirrors on and off 32,552 times a second. "Because the mirrors are so fast, we can make decisions very quickly, which is hard to do with a masked system," Oliver says. "You would spend several days ordering or fabricating a mask rather than milliseconds if you needed a new pattern." By controlling how long each mirror is switched on during a single second, the system varies the intensity of the projection to form two-dimensional or three-dimensional structures. Oliver likens the process to layer-by-layer assembly in a single step.

Ryan and Hart chose the stop-flow lithography approach, inspired by research from Professor Patrick Doyle's group at MIT, while they were at the University of Michigan as a platform for studying the manufacture of large quantities of custom microparticles. Their vision is to use particles that are designed to work together and act as a sensitive biosensor. To realize the vision, Ryan has a goal to produce microparticles from about 250 nanometers to about 100 microns in a library of shapes such as diamonds, triangles, squares, and octagons. "We're exploring methods of taking them down to the nanoscale, but the current system produces microparticles," Oliver says. "What sets this method apart is, one, high throughput; two, flexibility using the DMD chip; and three, the fact that you can control the shape as well as the size of the particles, and possibly the chemistry."

Oliver is studying how to manipulate a collection of polymer particles on a liquid surface in order to assemble them in specific ways. "We needed a platform in order to synthesize microparticles that we could perform self-assembly experiments on, because that promises to allow us to build sensors that we can't build now, that are too complex — they're made out of too many types of materials to fabricate using traditional manufacturing methods," Oliver says. "A lot of applications may require control over the shape, the surface finish, the chemistry, and the size of microparticles, so we've been exploring this as a method toward that end, as well as understanding how to improve the shape accuracy while increasing throughput."

Such templated polymers can be used for a range of processes, from drug delivery to cell culture assays to casting molds. Researchers in Hart's Mechanosynthesis Lab also adapted the ultraviolet-light-based polymerization to a roll-to-roll system in addition to the microfluidic system.

One drawback with PEG, which is a hydrogel, is that it readily absorbs water, so it can swell or change shape in wet environments.

"Beyond the manufacturing process, we are interested in secondary means to assemble the particles into complex, hierarchical structures, such as those including cells," Oliver says. "These assemblies could be very useful for performing high-throughput bioassays or building novel tissue-like structures."

Oliver followed Hart to MIT from the University of Michigan. He led work on the Robofurnace project, an automated bench-top chemical vapor deposition system for growing carbon nanotubes and other nanomaterials. He hopes to finish his PhD through Michigan in August. His dissertation will focus on a suite of tools for high-throughput polymer micromanufacturing and manipulation, including the direct-write fluidic lithography method. Oliver presented his work on polymers at a Materials Research Society meeting and at the Enabling Nanofabrication for Rapid Innovation workshop in 2013.

Denis Paiste
Materials Processing Center

####

For more information, please click here

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Microfluidics/Nanofluidics

Researchers invent 'smart' thread that collects diagnostic data when sutured into tissue: Advances could pave way for new generation of implantable and wearable diagnostics July 18th, 2016

Droplets finally all the same size -- in a nanodroplet library June 20th, 2016

NanoLabNL boosts quality of research facilities as Dutch Toekomstfonds invests firmly June 10th, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Academic/Education

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

SUNY Poly Celebrates Its 10th Year Exhibiting at SEMICON West with Cutting Edge Developments in Integrated Photonics and Power Electronics July 8th, 2016

FEI and King Abdullah University of Science and Technology Establish New Electron Microscopy ‘Centre of Excellence’: Centre of Excellence involves materials and life sciences research and technical collaboration July 5th, 2016

Self Assembly

WSU researchers develop shape-changing 'smart' material: Heat, light stimulate self-assembly July 4th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

DNA shaping up to be ideal framework for rationally designed nanostructures: Shaped DNA frames that precisely link nanoparticles into different structures offer a platform for designing functional nanomaterials June 14th, 2016

Materials/Metamaterials

New reaction for the synthesis of nanostructures July 21st, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

Announcements

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Tools

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

Nanometrics Announces Upcoming Investor Events July 20th, 2016

A mini-antenna for the data processing of tomorrow: Nature Nanotechnology: Short-wavelength spin waves generated directly for the first time July 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic