Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Shining a light on tiny polymer shapes: Visiting graduate student studies high-throughput manufacturing of precisely shaped microparticles

Shown here are examples of micro shapes polymerized by ultraviolet light in polyethylene glycol diacrylate (PEG-DA).
Image courtesy of Ryan Oliver/Mechanosynthesis Group
Shown here are examples of micro shapes polymerized by ultraviolet light in polyethylene glycol diacrylate (PEG-DA).

Image courtesy of Ryan Oliver/Mechanosynthesis Group

Abstract:
Ryan Oliver, a visiting graduate student in the lab of associate professor of mechanical engineering A. John Hart, is developing a technique called maskless fluidic lithography that creates unique shapes in a liquid polymer by exposing it to patterned ultraviolet light, a process known as photopolymerization.

Shining a light on tiny polymer shapes: Visiting graduate student studies high-throughput manufacturing of precisely shaped microparticles

Cambridge, MA | Posted on February 11th, 2014

For example, Oliver uses a projector to pattern shapes in polyethylene glycol diacrylate (PEG-DA), a common biocompatible polymer. Unlike semiconductor processing, which uses wafer masks produced as single-use items, the integrated projection system allows for rapid change of the pattern.

Key to the system is a Texas Instruments digital micromirror device (DMD) that can turn micromirrors on and off 32,552 times a second. "Because the mirrors are so fast, we can make decisions very quickly, which is hard to do with a masked system," Oliver says. "You would spend several days ordering or fabricating a mask rather than milliseconds if you needed a new pattern." By controlling how long each mirror is switched on during a single second, the system varies the intensity of the projection to form two-dimensional or three-dimensional structures. Oliver likens the process to layer-by-layer assembly in a single step.

Ryan and Hart chose the stop-flow lithography approach, inspired by research from Professor Patrick Doyle's group at MIT, while they were at the University of Michigan as a platform for studying the manufacture of large quantities of custom microparticles. Their vision is to use particles that are designed to work together and act as a sensitive biosensor. To realize the vision, Ryan has a goal to produce microparticles from about 250 nanometers to about 100 microns in a library of shapes such as diamonds, triangles, squares, and octagons. "We're exploring methods of taking them down to the nanoscale, but the current system produces microparticles," Oliver says. "What sets this method apart is, one, high throughput; two, flexibility using the DMD chip; and three, the fact that you can control the shape as well as the size of the particles, and possibly the chemistry."

Oliver is studying how to manipulate a collection of polymer particles on a liquid surface in order to assemble them in specific ways. "We needed a platform in order to synthesize microparticles that we could perform self-assembly experiments on, because that promises to allow us to build sensors that we can't build now, that are too complex they're made out of too many types of materials to fabricate using traditional manufacturing methods," Oliver says. "A lot of applications may require control over the shape, the surface finish, the chemistry, and the size of microparticles, so we've been exploring this as a method toward that end, as well as understanding how to improve the shape accuracy while increasing throughput."

Such templated polymers can be used for a range of processes, from drug delivery to cell culture assays to casting molds. Researchers in Hart's Mechanosynthesis Lab also adapted the ultraviolet-light-based polymerization to a roll-to-roll system in addition to the microfluidic system.

One drawback with PEG, which is a hydrogel, is that it readily absorbs water, so it can swell or change shape in wet environments.

"Beyond the manufacturing process, we are interested in secondary means to assemble the particles into complex, hierarchical structures, such as those including cells," Oliver says. "These assemblies could be very useful for performing high-throughput bioassays or building novel tissue-like structures."

Oliver followed Hart to MIT from the University of Michigan. He led work on the Robofurnace project, an automated bench-top chemical vapor deposition system for growing carbon nanotubes and other nanomaterials. He hopes to finish his PhD through Michigan in August. His dissertation will focus on a suite of tools for high-throughput polymer micromanufacturing and manipulation, including the direct-write fluidic lithography method. Oliver presented his work on polymers at a Materials Research Society meeting and at the Enabling Nanofabrication for Rapid Innovation workshop in 2013.

Denis Paiste
Materials Processing Center

####

For more information, please click here

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

Microfluidics/Nanofluidics

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

DNA 'barcoding' allows rapid testing of nanoparticles for therapeutic delivery February 7th, 2017

Academic/Education

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Self Assembly

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Most Complex Nanoparticle Crystal Ever Made by Design: Possible applications include controlling light, capturing pollutants, delivering therapeutics March 2nd, 2017

Materials/Metamaterials

Carbon displays quantum effects July 13th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

ANU invention may help to protect astronauts from radiation in space July 3rd, 2017

Brookhaven Scientists Study Role of 'Electrolyte Gating' in Functional Oxide Materials July 3rd, 2017

Announcements

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Tools

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

Nanometrics to Announce Second Quarter Financial Results on August 1, 2017 July 14th, 2017

Nanometrics Introduces SpectraProbe Analysis Software: Advanced software and algorithms enhancing Nanometrics metrology fleet capabilities fab-wide July 13th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project